Chapter 2.4 Permutations of Multisets

Let S be a multiset of k kinds of elements, each has its own multiplicity. Say $S=\{2 \cdot a, 2 \cdot b\}$. The all 3 -permutations of S are $a a b, a b a, b a a, b b a, b a b, a b b$.

1: Let $S=\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. What is the number of r-permutations of S ?

2: Let $S=\{5 \cdot a, 5 \cdot b, 5 \cdot c\}$. What is the number of permutations of S ? (That means 15 -permutations)

3: What is the number of permutations of a multiset $\{I, L, L, I, N, O, I, S\}$?

4: Let S be a multiset of k different object of multiplicities $n_{1}, n_{2}, \ldots, n_{k}$, where $n=n_{1}+n_{2}+\cdots+n_{k}$. What is the number of permutations of S ?

5: How many was is it possible to place 8 white non-attacking rooks on 8×8 chess board? (Recall that rook can move only horizontally or vertically, but it can move any number of squares)

6: How many was is it possible to place 8 non-attacking rooks on 8×8 chess board if 4 rooks are white and 4 rooks are black?

