Fall 2015, MATH-304

Chapter 2.5 Combinations of Multisets

Let S be a multiset of k kinds of elements, each has its own multiplicity. A multisubset of size r is an r-combination.
Say $S=\{3 \cdot a, 3 \cdot b\}$. The all 4 -combinations of S are $\{a, a, a, b\},\{a, a, b, b\},\{a, b, b, b\}$.
1: Let $S=\{\infty \cdot a, \infty \cdot b\}$. What is the number of r-combinations of S ?

2: Let $S=\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. What is the number of r-combinations of S ?

3: Let S be a multiset of k different object, each has infinite supply. What is the number of r combinations of S ?

4: What is the number of integer solution to the equation

$$
x_{1}+x_{2}+x_{3}=5
$$

subject to $x_{1}, x_{2}, x_{3} \geq 0$.

5: I'm hungry and I want to buy 6 items from McDonnald's. I can pick from Hamburger, Cheeseburger and small fries. How many different orders can I place?

6: What is the number of integral solutions of

$$
x_{1}+x_{2}+x_{3}+x_{4}=20
$$

subject to $x_{1} \geq 3, x_{2} \geq 1, x_{3} \geq 0, x_{4} \geq 5$?

