
Fall 2015, MATH-304
Chapter 3.3 Ramsey Theory - complete chaos is not possible

Suppose people at a party. Two know each other or don’t know each other

1: Find a diagram of a party of 5 people such that no 3 people all know each other or do not know

each other. That is, we don’t see or

Solution:

2: Is it possible to find a diagram on 6 people without and ?

(Hint: Pick one person and investigate who he knows. . . )

Solution: Pick person x. Without loss of generality assume he knows at least 3 other people. The these
3 either 1 pair know each other or non know each other - triangle is in both cases.

Graph is G is a pair of vertices V and edges E. That is G = (V,E). Edges E are pairs of vertices.
Example: People are vertices and if they know each other, add edge.

Complete graph Kn is a graph on n vertices with all possible edges.

3: Draw Kn for n ∈ {1, 2, 3, 4, 5}.

Solution:

Notation: K6 → K3K3 reads as (K6 arrows K3K3) and means in every coloring of edges of K6 by two
colors, there exists either K3 in the first color or K3 in the second color.

Notice that edges and non-edges can be treated as 2 colors.

Theorem (Ramsey) ∀m,n,∃p such that Kp → KmKn.

In other words, every 2-coloring of a huge graph Kp contains a monochromatic Km or Kn.

Denote smallest p by r(m,n).

4: Determine r(2, n).

Solution: r(2, n) = n If one edge, is red, we have red K2. If all edges are blue, we have blue Kn. It
cannot be < n, otherwise all edges blue would not give red K2 or blue Kn.
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5: Show that r(m,n) ≤ r(m− 1, n) + r(m,n− 1). (Hint: Consider p = r(m− 1, n) + r(m,n− 1) points.
Pick any point x and study set of blue or red neighbors.)

x

Solution: By pigeonhole principle, either first part has size r(m−1, n) or the second has size r(m,n−1)
(by pigeonhole principle). In either case, the result and x guarantee monochromatic Km or Kn.

Ramsey’s theorem can be extended to more than 2 colors. For c colors, we have Kp → Kn1Kn2 · · ·Knc .

6: Show Ramsey’s theorem for 3 colors. That is, prove that r(m,n, o) is finite (minimum p such that
Kp → KmKnKo).

Solution: r(m,n, o) ≤ r(m, r(n, 0)) consider n and o being one color. Generalizes to more colors.

Ramsey’s theorem can be extended to coloring more than pairs of vertices. For c colors, we have Kt
p →

Kt
n1
Kt

n2
· · ·Kt

nc
, which means that if we color all t subsets of vertices by c colors, there exists i such that

there are ni vertices where all t-subsets have color i.

Probabilistic lower bound by Erdős r(k, k) ≥ b2k/2c for all k ≥ 3.

Consider a random coloring of edges of Kn by red and blue.

7: What is the number of edges of Kn?

Solution:
(
n
2

)
8: What is the probability that a fixed set of k vertices is red? (all edges are red)

Solution: 1

2(
k
2)

9: What is the probability that a fixed set of k vertices is monochromatic? (all edges red or blue)

Solution: 21−(k2)

10: What is the possible number of k-subsets?

Solution:
(
n
k

)
11: What is the expected number of monochromatic subsets of size k? Recall expected value of X is
EX =

∑
X p(X)X.

Solution:
(
n
k

)
21−(k2)

12: Try to use n = b2k/2c and give an upper bound on the expected value.

Solution:
(
n
k

)
21−(k2) ≤ nk

k! · 2
1− k2−k

2 = 2
k2

2

k! ·
21+

k
2

2
k2
2

= 21+
k
2

k! < 1

13: What happens if the upper bound is < 1?

Solution: There must be one an entry with value 0.
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