Chapter 3.3 Ramsey Theory - complete chaos is not possible

Suppose people at a party. Two know each other $\bullet \bullet$ or don't know each other $\bullet \ldots \ldots . \bullet$
1: Find a diagram of a party of 5 people such that no 3 people all know each other or do not know each other. That is, we don't see

2: Is it possible to find a diagram on 6 people without (Hint: Pick one person and investigate who he knows...)
 and

Graph is G is a pair of vertices V and edges E. That is $G=(V, E)$. Edges E are pairs of vertices. Example: People are vertices and if they know each other, add edge.
Complete graph K_{n} is a graph on n vertices with all possible edges.
3: \quad Draw K_{n} for $n \in\{1,2,3,4,5\}$.

Notation: $K_{6} \rightarrow K_{3} K_{3}$ reads as (K_{6} arrows $K_{3} K_{3}$) and means in every coloring of edges of K_{6} by two colors, there exists either K_{3} in the first color or K_{3} in the second color.
Notice that edges and non-edges can be treated as 2 colors.
Theorem (Ramsey) $\forall m, n, \exists p$ such that $K_{p} \rightarrow K_{m} K_{n}$.
In other words, every 2-coloring of a huge graph K_{p} contains a monochromatic K_{m} or K_{n}.
Denote smallest p by $r(m, n)$.
4: Determine $r(2, n)$.

5: Show that $r(m, n) \leq r(m-1, n)+r(m, n-1)$. (Hint: Consider $p=r(m-1, n)+r(m, n-1)$ points. Pick any point x and study set of blue or red neighbors.)

Ramsey's theorem can be extended to more than 2 colors. For c colors, we have $K_{p} \rightarrow K_{n_{1}} K_{n_{2}} \cdots K_{n_{c}}$.
6: Show Ramsey's theorem for 3 colors. That is, prove that $r(m, n, o)$ is finite (minimum p such that $\left.K_{p} \rightarrow K_{m} K_{n} K_{o}\right)$.

Ramsey's theorem can be extended to coloring more than pairs of vertices. For colors, we have $K_{p}^{t} \rightarrow$ $K_{n_{1}}^{t} K_{n_{2}}^{t} \cdots K_{n_{c}}^{t}$, which means that if we color all t subsets of vertices by c colors, there exists i such that there are n_{i} vertices where all t-subsets have color i.
Probabilistic lower bound by Erdős $r(k, k) \geq\left\lfloor 2^{k / 2}\right\rfloor$ for all $k \geq 3$.
Consider a random coloring of edges of K_{n} by red and blue.
7: What is the number of edges of K_{n} ?

8: What is the probability that a fixed set of k vertices is red? (all edges are red)

9: What is the probability that a fixed set of k vertices is monochromatic? (all edges red or blue)

10: What is the possible number of k-subsets?

11: What is the expected number of monochromatic subsets of size k ? Recall expected value of X is $E X=\sum_{X} p(X) X$.

12: Try to use $n=\left\lfloor 2^{k / 2}\right\rfloor$ and give an upper bound on the expected value.

13: What happens if the upper bound is <1 ?

