Chapter 5.1 Pascal's triangle

Recall Pascal's formula $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ and $\binom{n}{0}=\binom{n}{n}=1$.
1: Create a Pascal's triangle for n up to 8 .

$n \backslash k$	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1		1						
3	1			1					
4	1				1				
5	1					1			
6	1						1		
7	1							1	
8	1								1

2: Suppose you start at $(0,0)$ in Pascal's triangle. How many ways can you get to (n, k) if you can walk only in directions \downarrow and

Chapter 5.2 Binomial Theorem

Theorem 5.2.1 For every integer $n>0$ and all x and y

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\binom{n}{3} x^{n-3} y^{3}+\cdots+\binom{n}{n} y^{n} \\
& =\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
\end{aligned}
$$

3: Prove Binomial Theorem. (Hints: Investigate how the multiplication expands. Or think about an alphabet of $x+y$ letters and making n-letter words. Or induction.)

4: Expand $(x+1)^{n}$.

5: What happens with Binomial theorem if $x=1$ and $y=1$? Give a combinatorial interpretation of the resulting identity.

6: What happens with Binomial theorem if $x=1$ and $y=-1$? Give a combinatorial interpretation of the resulting identity.

7: Prove that the sequence of numbers in each row of Pascal's triangle is a power of 11. I.e., $" 1,2,1 " \rightarrow 121=11^{2}$. For this you need to carry over numbers bigger than 9 to the left. So for example " $1,5,10,10,5,1 "$ gives " $161051 "=11^{5}$.
Hint: How to build the result from numbers/digits in the triangle? By sum and multiplying by $10,100, \ldots$. ?

8: What is the coefficient of $x^{5} y^{13}$ in the expansion of $(3 x-2 y)^{18}$? What is the coefficient of $x^{8} y^{9}$?

9: \quad Show that $k\binom{n}{k}=n\binom{n-1}{k-1}$.
(Try to find also a combinatorial argument)

10: Show that

$$
1\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}=n 2^{n-1}
$$

(Is it possible to do it from binomial theorem? Hint: derivative.)

11: Evaluate

$$
\binom{n}{0}-2\binom{n}{1}+3\binom{n}{2}+\ldots+(-1)^{n}(n+1)\binom{n}{n} .
$$

12: By integrating the binomial expansion, prove that, for any integer n,

$$
1+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n+1}\binom{n}{n}=\frac{2^{n+1}-1}{n+1}
$$

