Fall 2015, MATH-304 **Chapter 5.3 Unimodality of Binomial Coefficients** Let S be a set. Let $C \subseteq P(S) = 2^S$ (C is a set of subsets). C is a **chain** if $\forall A, B \in C \ A \subseteq B$ or $B \subseteq A$ C is an **antichain** if $\forall A, B \in C \ A \subseteq B$ and $B \not\subseteq A$ Example: Let $S = \{a, b, c, d, e\}$. $C = \{\{a, b, c\}, \{b, c\}, \{c\}\}$ is a chain and $C = \{\{a, b\}, \{b, c\}, \{a, d, c\}\}$ is an aintichain.

We use Hasse diagram to draw the set of all subsets in inclusion relations.

(The diagram is used for Partially Ordered Sets (**posets**). We use $A \leq B$ is $A \subseteq B$).

- 1: Let |S| = n. What is the size of the longest chain in P(S)?
- **2:** How many longest chains are there in P(S)?

3: Let C be a chain and A be an antichain. What is the maximum size of $C \cap A$? (Hint: What are possible sizes of intersection?)

4: Let |S| = n. Let \mathcal{Y} be the set of all subsets that have size k. Is \mathcal{Y} a chain or antichain?

5: Let |S| = n. What is the largest antichain in P(S) that contains only sets of the same size? (What is the largest binomial coefficient $\binom{n}{k}$ over all k?)

Sperner's theorem: Let |S| = n. Then the size of maximum antichain in P(S) is at most $\binom{n}{\lfloor \frac{n}{2} \rfloor}$. **Proof:** Let \mathcal{A} be the maximal antichain. Count the size of

 $X = \{ (A, \mathcal{C}) : A \in \mathcal{A}, \mathcal{C} \text{ is a maximum chain, } A \in \mathcal{C} \}.$

Note that $A \subseteq S$ and we are counting intersections of \mathcal{A} with chains.

6: If C is a fixed maximum chain, how many pairs (A, C) in X contain this chain? Does it give an upper bound on |X|?

7: Let $A \in \mathcal{A}$ be fixed. Suppose |A| = k. How many pairs (A, \mathcal{C}) in X contain A? (That is, how many maximum chains contain A?)

Let $a_k = |\{A \in \mathcal{A} : |A| = k\}|$. Notice that $|\mathcal{A}| = \sum_{k=0}^n a_k$. The double counting of |X| gives

$$\sum_{k=0}^{n} a_k k! (n-k)! = |X| \le n!$$

8: Finish the proof of the Sperner's theorem by showing that $|\mathcal{A}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

9: Let $X = \{1, 2, ..., 9\}$. Let (X, |) be a partial ordered set where $a \le b$ if a|b (means a divides b). Draw Hasse diagram for X and find a maximum chain and antichain.

10: Let (X, \leq) be a poset. Suppose the size of the maximum chain is k. Show that (X, \leq) can be partitioned into k antichains (partition is disjoint union).