Chapter 5.3 Unimodality of Binomial Coefficients

Let S be a set. Let $\mathcal{C} \subseteq P(S)=2^{S}$ (\mathcal{C} is a set of subsets).
\mathcal{C} is a chain if $\forall A, B \in \mathcal{C} A \subseteq B$ or $B \subseteq A$
\mathcal{C} is an antichain if $\forall A, B \in \mathcal{C} A \nsubseteq B$ and $B \nsubseteq A$
Example: Let $S=\{a, b, c, d, e\} . \mathcal{C}=\{\{a, b, c\},\{b, c\},\{c\}\}$ is a chain and $\mathcal{C}=\{\{a, b\},\{b, c\},\{a, d, c\}\}$ is an aintichain.
We use Hasse diagram to draw the set of all subsets in inclusion relations.
(The diagram is used for Partially Ordered Sets (posets). We use $A \leq B$ is $A \subseteq B$).
1: Let $|S|=n$. What is the size of the longest chain in $P(S)$?

2: How many longest chains are there in $P(S)$?

3: Let \mathcal{C} be a chain and \mathcal{A} be an antichain. What is the maximum size of $\mathcal{C} \cap \mathcal{A}$?
(Hint: What are possible sizes of intersection?)

4: Let $|S|=n$. Let \mathcal{Y} be the set of all subsets that have size k. Is \mathcal{Y} a chain or antichain?

5: Let $|S|=n$. What is the largest antichain in $P(S)$ that contains only sets of the same size? (What is the largest binomial coefficient $\binom{n}{k}$ over all k ?)

Sperner's theorem: Let $|S|=n$. Then the size of maximum antichain in $P(S)$ is at most $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
Proof: Let \mathcal{A} be the maximal antichain. Count the size of

$$
X=\{(A, \mathcal{C}): A \in \mathcal{A}, \mathcal{C} \text { is a maximum chain, } A \in \mathcal{C}\} .
$$

Note that $A \subseteq S$ and we are counting intersections of \mathcal{A} with chains.
6: If \mathcal{C} is a fixed maximum chain, how many pairs (A, \mathcal{C}) in X contain this chain? Does it give an upper bound on $|X|$?

7: Let $A \in \mathcal{A}$ be fixed. Suppose $|A|=k$. How many pairs (A, \mathcal{C}) in X contain A ? (That is, how many maximum chains contain A ?)

Let $a_{k}=|\{A \in \mathcal{A}:|A|=k\}|$. Notice that $|\mathcal{A}|=\sum_{k=0}^{n} a_{k}$.
The double counting of $|X|$ gives

$$
\sum_{k=0}^{n} a_{k} k!(n-k)!=|X| \leq n!
$$

8: Finish the proof of the Sperner's theorem by showing that $|\mathcal{A}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

9: Let $X=\{1,2, \ldots, 9\}$. Let (X, \mid) be a partial ordered set where $a \leq b$ if $a \mid b$ (means a divides b). Draw Hasse diagram for X and find a maximum chain and antichain.

10: Let (X, \leq) be a poset. Suppose the size of the maximum chain is k. Show that (X, \leq) can be partitioned into k antichains (parititon is disjoint union).

