Fall 2015, MATH-304

Chapters 6.4 Permutations with forbidden positions

Recall derangements: $\pi \in S_{n}$ such that $\pi(i) \neq i$.
Suppose that every i has a set of forbidden images X_{i}. That is, for all i we have $\pi(i) \notin X_{i}$. Use notation

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =\left\{\pi \in S_{n}: \forall i, \pi(i) \notin X_{i}\right\} \\
p\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =\left|P\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right| .
\end{aligned}
$$

1: Let $n=3$ an $X_{1}=\{2\}, X_{2}=\{1,3\}, X_{3}=\emptyset$. Write elements of $P\left(X_{1}, X_{2}, X_{3}\right)$ and compute $p\left(X_{1}, X_{2}, X_{3}\right)$.

2: Write derangements using the $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ notation.

The problem of permutations with forbidden positions can be formulated using placing non-attacking rooks on a board with forbidden positions.

3: Let $n=4$ and $X_{1}=\{1,2\}, X_{2}=\{2,3\}, X_{3}=\{3,4\}, X_{4}=\{1,4\}$. Create an instance of placing non-attacking rooks on $n \times n$ board with forbidden positions and find a bijection between placing rooks and $P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. This shows $p\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is the number of placings rooks. Compute $p\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ (using principle of inclusion and exclusion, use A_{i} for rook i is placed in X_{i}, that is the bad positions).

Suppose we have an $n \times n$ board with forbidden positions and corresponding X_{1}, \ldots, X_{n}.
4: Let $A_{i}=\left\{\pi \in S_{n}: \pi(i) \in X_{i}\right\}$ be the bad permutations for i. Use principle of inclusion and exclusion to find a formula for $p\left(X_{1}, \ldots, X_{n}\right)$.

5: Is it possible to simplify $\sum_{i}\left|A_{i}\right|$ using X_{i} s?

6: Write $\left|A_{i} \cap A_{j}\right|$ using X_{i} and X_{j}.

Use notation

$$
\sum\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=r_{k} \cdot(n-k)!
$$

Theorem 6.4.1 Number of ways to place non-attacking rooks on board $n \times n$ with forbidden squares is

$$
n!-r_{1}(n-1)!+r_{2}(n-2)!-r_{3}(n-3)!\cdots(-1)^{n} r_{n}
$$

7: Determine how many permutations on S_{6} are where the forbidden images are $X_{1}=\{1\}, X_{2}=\{1,2\}$, $X_{3}=\{3,4\}, X_{4}=\{3,4\}, X_{5}=\emptyset, X_{6}=\emptyset$.

Note: The method works well if the number of forbidden positions is small.

Chapters 6.5 Another Forbidden Position Problem

Problem: n boys take a walk in a line

$$
12345678 \ldots n
$$

where 1 precedes 2 who precedes 3 etc.
How many ways are there to rearrange the boys so that no one precedes the person he preceded before? e.g., if $n=3$ then 213 is OK but not 231 (2 is right in front of 3 as it was before) Restated: count permutations $\Pi \in S_{n}$ that avoid the pairs

$$
12,23, \ldots, n-1 n
$$

denote the number by Q_{n}.
8: Compute Q_{1}, Q_{2} and Q_{3}. Brave may try Q_{4}.

9: Show a general formula

$$
Q_{n}=n!-\binom{n-1}{1}(n-1)!+\binom{n-1}{2}(n-2)!-\binom{n-1}{3}(n-3)!+\cdots+(-1)^{n-1}\binom{n-1}{n-1} 1!.
$$

Hint: Use principle of inclusion and exclusion, let A_{j} be permutations where $j(j+1)$ occurs, then use principle of inclusion and exclusion.

10: Show that $\left|A_{i_{1}}\right|=(n-1)!$.

11: \quad Show that $\left|A_{i_{1}} \cap A_{i_{2}}\right|=(n-2)!$.

12: Show that $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)$! for all k.

13: Use principle of inclusion and exclusion to compute Q_{n}.

14: Problem des ménages A host wants to seat n couples in a table, seating the men first. However, the host does not want to put wives on either side of their husband. How many ways are there to do this?
Hint: Use rooks placements. The resulting formula is from the principle of inclusion and exclusion but it is possible to compute the coefficients r_{i}.

15: Bonus Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.
Next time: Chapter 7.1

