
Fall 2015, MATH-304
Chapters 6.4 Permutations with forbidden positions

Recall derangements: π ∈ Sn such that π(i) 6= i.

Suppose that every i has a set of forbidden images Xi. That is, for all i we have π(i) 6∈ Xi. Use notation

P (X1, X2, . . . , Xn) = {π ∈ Sn : ∀i, π(i) 6∈ Xi}
p(X1, X2, . . . , Xn) = |P (X1, X2, . . . , Xn)|.

1: Let n = 3 an X1 = {2}, X2 = {1, 3}, X3 = ∅. Write elements of P (X1, X2, X3) and compute
p(X1, X2, X3). Solution: P (X1, X2, X3) = {(1, 2, 3), (3, 2, 1)} and p(X1, X2, X3) = 2.

2: Write derangements using the P (X1, X2, . . . , Xn) and p(X1, X2, . . . , Xn) notation. Solution:
Let Xi = {i}.

The problem of permutations with forbidden positions can be formulated using placing non-attacking
rooks on a board with forbidden positions.

3: Let n = 4 and X1 = {1, 2}, X2 = {2, 3}, X3 = {3, 4}, X4 = {1, 4}. Create an instance of plac-
ing non-attacking rooks on n × n board with forbidden positions and find a bijection between placing
rooks and P (X1, X2, X3, X4). This shows p(X1, X2, X3, X4) is the number of placings rooks. Compute
p(X1, X2, X3, X4) (using principle of inclusion and exclusion, use Ai for rook i is placed in Xi, that is the
bad positions). Solution:

× ×

× ×

× ×

For using Principle of Inclusion and Exclusion, we get |Ai| = 2 × 3!. For intersections of paris we have
|A1 ∩A2| = 3× 2!, |A1 ∩A3| = 4× 2!, |A2 ∩A3| = 3× 2!. Finally, for |A1 ∩A2 ∩A3| = 4. Total

|A1 ∩A2 ∩A3| = 4!−
∑
i

|Ai|+
∑
i 6=j

|Ai ∩Aj | − |A1 ∩A2 ∩A3|

= 4!− (2 + 2 + 2)3! + (3 + 4 + 3)2!− 4

= 24− 36 + 20− 4 = 4.

Suppose we have an n× n board with forbidden positions and corresponding X1, . . . , Xn.

4: Let Ai = {π ∈ Sn : π(i) ∈ Xi} be the bad permutations for i. Use principle of inclusion and exclusion
to find a formula for p(X1, . . . , Xn). Solution:

p(X1, . . . , Xn) = |A1 ∩ · · · ∩An| = |Sn| −
∑
i

|Ai|+
∑
i 6=j

|Ai ∩Aj |+ · · ·+ (−1)n|A1 ∩ · · · ∩An|
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5: Is it possible to simplify
∑

i |Ai| using Xis? Solution:

Observe |Ai| = |Xi| · (n− 1)! Hence
∑

i |Ai| = (n− 1)! ·
∑

i |Xi|.

6: Write |Ai ∩Aj | using Xi and Xj . Solution:

|Ai ∩Aj | =
(
|Xi| · |Xj \Xi|+ |Xj | · |Xi \Xj |+

(
|Xi ∩Xj |

2

))
· (n− 2)!

Use notation ∑
|Ai1 ∩Ai2 ∩ · · · ∩Aik | = rk · (n− k)!

Theorem 6.4.1 Number of ways to place non-attacking rooks on board n× n with forbidden squares is

n!− r1(n− 1)! + r2(n− 2)!− r3(n− 3)! · · · (−1)nrn.

7: Determine how many permutations on S6 are where the forbidden images are X1 = {1}, X2 = {1, 2},
X3 = {3, 4}, X4 = {3, 4}, X5 = ∅, X6 = ∅.
Solution: Lets count ri. We get

r1 = 7, r2 = 1 + 2 + 2 + 4 + 4 + 2 = 15, r3 = 2 + 2 + 2 + 4 = 10, r4 = 2

Hence
p(X1, X2, X3, X4, X5, X6) = 6!− 7 · 5! + 15 · 4!− 10 · 3! + 2 · 2! = 184

Note: The method works well if the number of forbidden positions is small.

Chapters 6.5 Another Forbidden Position Problem
Problem: n boys take a walk in a line

1 2 3 4 5 6 7 8 . . . n

where 1 precedes 2 who precedes 3 etc.
How many ways are there to rearrange the boys so that no one precedes the person he preceded before?
e.g., if n = 3 then 2 1 3 is OK but not 2 3 1 (2 is right in front of 3 as it was before)
Restated: count permutations Π ∈ Sn that avoid the pairs

12, 23, ..., n− 1n,

denote the number by Qn.

8: Compute Q1, Q2 and Q3. Brave may try Q4. Solution:

Q1 = 1, {(1)} Q2 = 1, {(2 1)} Q3 = 3, {(2 1 3), (3 2 1), (1 3 2)} Q4 = 11
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9: Show a general formula

Qn = n!−
(
n− 1

1

)
(n− 1)! +

(
n− 1

2

)
(n− 2)!−

(
n− 1

3

)
(n− 3)! + · · ·+ (−1)n−1

(
n− 1

n− 1

)
1!.

Hint: Use principle of inclusion and exclusion, let Aj be permutations where j(j + 1) occurs, then use
principle of inclusion and exclusion.

10: Show that |Ai1 | = (n− 1)!. Solution: We fix the pair of i1(i1 + 1). This leaves us with n− 1
numbers that we can permute.

11: Show that |Ai1 ∩ Ai2 | = (n − 2)!. Solution: If i1 + 1 6= i2, we get two pairs and n − 4 single
numbers. Hence (n − 2)!. If we have i1 + 1 = i2, we get one triple and n − 3 single numbers. Hence
(n− 2)!.

12: Show that |Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = (n − k)! for all k. Solution: Everytime we add new ij , it
merges two pieces together (for the purpose of counting permutations). Since we are adding k entries, we
merge k-times, which leaves us with n− k blocks and (k − 1)!.

13: Use principle of inclusion and exclusion to compute Qn. Solution: Let Aj be the permutations
where j(j + 1) does occur. We try to compute

Qn = |A1 ∩A2 ∩ · · · ∩An−1|

Then use the complementary form of inclusion exclusion and noting

∑
|Ai1 ∩Ai2 ∩ · · · ∩Aik | =

(
n− 1

k

)
(n− k)!

This holds by treating each ijij+1 as a block. (You should use the fact that if, e.g., you use 12,23,34, then
you have the block 1234, permuted together with 5,6,7,8,...; see Section 6.5 of the textbook.)

Series of observations:
|Ai1 | = (n− 1)!

|Ai1 ∩Ai2 | = (n− 2)!

If they are disjoint, it is easily (n− 2)!. If they are not disjoint, then they create one triple and again it
is (n− 2)!.

So in total by PIE

Qn = n!−
(
n− 1

1

)
(n− 1)! +

(
n− 1

2

)
(n− 2)!−

(
n− 1

3

)
(n− 3)! + · · ·+ (−1)n−1

(
n− 1

n− 1

)
1!

Bonus note: Qn = Dn +Dn−1 as HW.
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14: Problem des ménages A host wants to seat n couples in a table, seating the men first. However, the
host does not want to put wives on either side of their husband. How many ways are there to do this?

Hint: Use rooks placements. The resulting formula is from the principle of inclusion and exclusion but
it is possible to compute the coefficients ri. Solution: The idea is to convert it to a rook placement
problem with forbidden board:

× ×

× ×

× ×

× ×

××

The idea is let the sets As for each forbidden square s. Let rk(B) be the number of ways to place rooks
in the forbidden region. We argued that this equals (2n/2n−k)

(
2n−k

k

)
. Use that it is the same as putting

the squares in a circle and not picking two consecutive ones. Thus by inclusion-exclusion the answer is

n∑
k=0

rk(B)(n− k)!(−1)k =

n∑
k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)!

If you want to account for the men seated first, multiply by n!× 2.

15: Bonus Given any five points on a sphere, show that some four of them must lie on a closed
hemisphere.

Next time: Chapter 7.1
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