Chapters 7.1 Fibonacci Numbers

Study sequences of numbers $h_{0}, h_{1}, h_{2}, \ldots$. Questions: encoding, computing h_{n}, combinatorial interpretation
Examples of sequences:

- 1111 ...
$h_{0}=1, h_{1}=1, h_{2}=2, \ldots$
- 0 C $2 C 3 C 4 C \ldots$
$h_{n}=h_{n-1}+C$ or $h_{n}=n C$
- $D_{0} D_{1} D_{2} D_{3} \cdots$
$D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)$, no expression $D_{n}=$ something.

1: Let h_{n} be the number of regions in the plane cut by n lanes. Give a formula for h_{n}.

Fibonacci sequence:
$f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$

$$
0112358 \cdots
$$

2: Prove that

$$
\sum_{i=0}^{n} f_{i}=f_{n+2}-1
$$

Hint: Induction on n.

3: Prove that f_{n} is even iff n is divisible by 3 .

Solving the Fibonacci recurrence:

Guess f_{n} behaves like q^{n} for some q. Recall

$$
\begin{equation*}
f_{n}-f_{n-1}-f_{n-2}=0 \tag{1}
\end{equation*}
$$

4: Compute candidates for q by replacing f_{n} by q^{n} in (1).

5: How to pick the right q for f_{n} ?

6: How many ways are there to tile a $2 \times n$ board using dominoes?

Next time: Chapter 7.2

