Chapters 7.2 Generating Functions

Study sequences of numbers $h_{0}, h_{1}, h_{2}, \ldots$.
Say they count \# of solutions to some combinatorial problem.
Idea: Use h_{i} as coefficients of a polynomial

$$
g(x)=h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+\cdots+h_{t} x^{t}+\cdots
$$

Use notation

$$
h_{i}=\left[x^{i}\right] g(x) .
$$

Trick: Sometimes it is easier to solve all h_{i} 's at the same time than separately.
1: Find generating function for sequence
$111111000000 \cdots$

2: Find generating function for sequence
$111111111111 \ldots$

3: Find generating function for sequence
$13310000 \cdots$

Closed form of generating function is handy when multiplying or adding generating functions.
4: Find coefficient of x^{2015} of $g(x)$, that is $\left[x^{2015}\right] g(x)$, where
(a) $g(x)=(1-2 x)^{5000}$
(b) $g(x)=\frac{1}{1+3 x}$
(c) $g(x)=\frac{1}{(1+5 x)^{2}}$

5: Let $k \in \mathbb{N}$ be fixed. Let h_{t} be the number of integer solutions of

$$
e_{1}+e_{2}+e_{3}+\cdots+e_{k}=t
$$

where $e_{1} \geq 0, e_{2} \geq 0, \ldots, e_{k} \geq 0$. Find a closed form for the generating function.

6: Find a (more) closed form for the following generating function and try to find interpretation as solutions

$$
\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right) \cdot\left(x+x^{2}\right) \cdot\left(1+x+x^{2}+x^{3}+x^{4}\right)
$$

7: Write down the generating series for counting the number of possibilities to pay t cents using 1,5 and 25 cent coins.

8: Count the number of ways to make a pack of n fruits if

- \# of apples is even
- \# of bananas is a multiple of 5
- \# at most 4 oranges
- \# 0 or 1 pear

Write as generating function $g(x)$ and read $\left[x^{n}\right] g(x)$.

Notice the generating function works something like
(or or or) and (or or or) and (or or or)

9: 20 students, how many ways to pick 7 who get A? Solve this using generating functions as well as without it. Build the generating function be deciding for every student individually if the student is getting A or not.

10: 20 students, how many ways to distribute 50 identical candies to the students? Use generating functions.

11: Compute generating function counting number of ways of getting sum h_{i} on two dices.

12: Determine the generating series for partitions. Partitions is the number of ways to write n as a sum on at most n non-negative integers that decrease in size. That is,

$$
n=x_{1}+x_{2}+x_{3}+\cdots+x_{n}
$$

where $x_{1} \geq x_{2} \geq x_{3} \geq \cdots \geq 0$. Let h_{n} be the number of partitions on n, write the generating function for sequence h_{n}.
Hint: In partition is important how many times is each number used. Solution is a big product.

13: Give generating function for the following sequence

$$
1,2,3,4,5,6, \ldots
$$

Next time: Few more ordinary generating functions and then exponential generating functions.

