Fall 2015, MATH-304

Chapters 7.2 Generating Functions

Study sequences of numbers h_0, h_1, h_2, \ldots Say they count # of solutions to some combinatorial problem. Idea: Use h_i as coefficients of a polynomial

$$g(x) = h_0 + h_1 x + h_2 x^2 + h_3 x^3 + \dots + h_t x^t + \dots$$

Use notation

 $h_i = [x^i]g(x).$

Trick: Sometimes it is easier to solve all h_i 's at the same time than separately.

1: Find generating function for sequence

```
1 1 1 1 1 1 1 0 0 0 0 0 0 \cdots
```

2: Find generating function for sequence

```
1 1 1 1 1 1 1 1 1 1 1 1 1 \dots
```

3: Find generating function for sequence

$$1 \ 3 \ 3 \ 1 \ 0 \ 0 \ 0 \ \cdots$$

Closed form of generating function is handy when multiplying or adding generating functions.

4: Find coefficient of x^{2015} of g(x), that is $[x^{2015}]g(x)$, where (a) $g(x) = (1-2x)^{5000}$ (b) $g(x) = \frac{1}{1+3x}$ (c) $g(x) = \frac{1}{(1+5x)^2}$ **5:** Let $k \in \mathbb{N}$ be fixed. Let h_t be the number of integer solutions of

 $e_1 + e_2 + e_3 + \dots + e_k = t,$

where $e_1 \ge 0, e_2 \ge 0, \dots, e_k \ge 0$. Find a closed form for the generating function.

6: Find a (more) closed form for the following generating function and try to find interpretation as solutions

 $(1 + x + x^{2} + x^{3} + x^{4} + x^{5}) \cdot (x + x^{2}) \cdot (1 + x + x^{2} + x^{3} + x^{4})$

7: Write down the generating series for counting the number of possibilities to pay t cents using 1, 5 and 25 cent coins.

8: Count the number of ways to make a pack of n fruits if

- # of apples is even
- # of bananas is a multiple of 5
- # at most 4 oranges
- # 0 or 1 pear

Write as generating function g(x) and read $[x^n]g(x)$.

Notice the generating function works something like

(or or or) and (or or or) and (or or or)

9: 20 students, how many ways to pick 7 who get A? Solve this using generating functions as well as without it. Build the generating function be deciding for every student individually if the student is getting A or not.

10: 20 students, how many ways to distribute 50 identical candies to the students? Use generating functions.

11: Compute generating function counting number of ways of getting sum h_i on two dices.

12: Determine the generating series for partitions. Partitions is the number of ways to write n as a sum on at most n non-negative integers that decrease in size. That is,

$$n = x_1 + x_2 + x_3 + \dots + x_n,$$

where $x_1 \ge x_2 \ge x_3 \ge \cdots \ge 0$. Let h_n be the number of partitions on n, write the generating function for sequence h_n .

Hint: In partition is important how many times is each number used. Solution is a big product.

13: Give generating function for the following sequence

 $1, 2, 3, 4, 5, 6, \ldots$

Next time: Few more ordinary generating functions and then exponential generating functions.