
Fall 2015, MATH-304
Chapter 7.3 Exponential Generating Functions

Recall ordinary generating functions:

Sequence 1 1 1 1 1 1 1 . . . corresponds to 1 + x + x2 + . . . = 1
1−x = g(x).

1: Find ordinary generating function for

1 1 2! 3! 4! 5! 6! · · ·

Solution:
g(x) = 1 + x + 2!x2 + 3!3 + 4!x4 + · · ·

but this has no closed form. Series grows too fast.

Definition: Exponential generating function is defined as

g(e)(x) =

∞∑
i=0

hi
xi

i!
,

where 0! = 1.

2: Find exponential generating function for

0! 1! 2! 3! 4! 5! 6! · · ·

Solution:

g(e)(x) =
∞∑
i=0

hi
xi

i!
=
∑
i≥0

i!
xi

i!
=
∑
i≥0

xi =
1

1− x

3: Find exponential generating function for

1 1 1 1 1 1 1 · · ·

Solution:

g(e)(x) =

∞∑
n=0

xn

n!
= ex

4: Let a ∈ N what are coefficients at eax = g(e)(x)? Find combinatorial explanation. Solution:

g(e)(x) = eax =
∞∑
k=0

(ax)k

k!
=

∞∑
k=0

ak
xk

k!

Counts words of length k from alphabet of size a.

Note: Ordinary generating series are good for counting unlabeled (unordered) objects.

Exponential generating series are good for counting labeled (ordered) objects

5: What is the number of permutations of the word MISSISSIPPI?

Solution: 11!
4!4!2!1!
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Theorem 7.3.1 Let S be a multiset = {n1 × a1;n2 × a2; · · · ;nk × ak}, where ni ≥ 1. Let hn be the
number of n-permutations of S. Then

g(e)(x) = fn1(x)fn2(x) · · · fnk
(x),

where

fni(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xni

ni!

Holds also for ni =∞.

6: Prove theorem 7.3.1. Solution: Recall we want

g(e)(x) = h0 + h1x1 + h2
x2

2!
+ h3

x3

3!
+ · · ·

We start with writing

g(e)(x) = fn1(x)fn2(x) · · · fnk
(x)

=

(
1 + x +

x2

2!
+

x3

3!
+ · · ·+ xni

n1!

)
×
(

1 + x +
x2

2!
+ · · ·+ xni

n2!

)
× · · · ×

(
1 + x +

x2

2!
+ · · ·+ xni

nk!

)
If we want [xn]g(e)(x), we pick [xm1 ]fn1(x), [xm2 ]fn2(x),. . . ,[xmk ]fnk

(x), where m1 + m2 + · · ·+ mk = n.
So the polynomial with xn in g(e)(x) is∑

m1+···+mk=n

xm1

m1!
· x

m2

m2!
· · · x

mk

mk!
=

∑
m1+···+mk=n

xn

m1!m2! · · ·mk!
=

∑
m1+···+mk=n

n!

m1!m2! · · ·mk!
· x

n

n!

Hence

hn =
∑

m1+···+mk=n

n!

m1!m2! · · ·mk!
=

∑
m1+···+mk=n

(
n

m1 m2 · · · mk

)

7: Let hn be the number of n digit numbers with digits 1,2,3. (without restrictions, 3n numbers).
Suppose in addition, that

• # of 1s is even

• # of 2s is at least 3

• # of 3s is at most 4

Find generating function g(e)(x). [not a particularly nice] Solution:

f1(x) = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

f2(x) = 1 +
x3

3!
+

x4

4!
+

x5

5!
+ · · ·

f3(x) = 1 +
x1

1!
+

x2

2!
+

x3

3!
+

x4

4!

g(e)(x) = f1(x) · f2(x) · f3(x)
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8: Find closed form of exponential generating functions for

• 1 4 42 43 44 45 . . .

• 1 -1 1 -1 1 -1 . . .

• 1 0 1 0 1 0 . . .

Solution:

• e4x

• e−x

• 1
2 (ex + e−x)

9: Let n ∈ Z be fixed. Define

hk =

{
n!

(n−k)! if k ≤ n

0 otherwise

Find exponential generating function for hk. Solution:

g(e)(x) =

∞∑
k=0

hk
xk

k!
=

n∑
k=0

n!

(n− k)!

xk

k!
=
∑
k

(
n

k

)
xk = (1 + x)n.

10: Count the number hn of colorings of squares of a board 1× n by colors red, green, and blue such
that the number of red squares is even. Solve using exponential generating functions. Solution: We
construct small ones first:

g(e)g (x) = g
(e)
b (x) =

(
1 +

x1

1!
+

x2

2!
+ · · ·

)
= ex g(e)r (x) =

(
1 +

x2

2!
+

x4

4!
+ · · ·

)
=

1

2
(ex + e−x)

Hence we get

g(e)(x) = g(e)g (x) · g(e)b (x) · g(e)r (x)

= ex · ex · 1

2
(ex + e−x)

=
1

2

(
e3x + ex

)
=

1

2

(∑
n

(3n + 1)
xn

n!

)

Hence the result is hn = 1
2(3n + 1).

11: Count the number hn of colorings of squares of a board 1 × n by colors red, green, and blue
such that the number of red squares is even. Solve without using generating functions (use induction
like (what color is the first square), find recurrence formula for hn, use complement) Solution: We
observe that h1 = 2. Now we try to build the recurrence. If first square is green or blue, the rest can be
filled by hn−1. If the first square is red, the rest has to contain odd number of red ones. Hence it will be
all − even = 3n−1 − hn−1. In total, we get

hn = 2hn−1 + (3n−1 − hn−1) = 3n−1 + hn−2 = 3n−1 + 3n−2 + hn−3 = · · · = 3n−1 + 3n−2 + 31 + h1

= 1 +
3n − 1

3− 1
=

3n + 1

2
.
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12: Determine the number of n-digit numbers with all digits odd, such that 1 and 3 each occur
a nonzero, even number of times. Solution: We create a generation function for each of them
separately first. For 1 and 3 we get

g
(e)
1 (x) = g

(e)
3 (x) =

x2

2!
+

x4

4!
+

x6

6!
+ · · · = ex + e−x

2
− 1.

For 5,7 and 9 we get

g
(e)
5 (x) = g

(e)
7 (x) = g

(e)
9 (x) = 1 + x +

x2

2!
+

x3

3!
+ · · · = ex.

In total we have

g(e)(x) = g
(e)
1 (x) · g(e)3 (x) · g(e)5 (x) · g(e)7 (x) · g(e)9 (x)

=

(
ex + e−x − 2

2

)2

· e3x

=
1

4

(
e5x − 4e4x + 6e3x − 4e2x + ex

)
=
∞∑
n=0

5n − 4 · 4n + 6 · 3n − 4 · 2n + 1

4
· x

n

n!

The number of n-digit numbers is

5n − 4 · 4n + 6 · 3n − 4 · 2n + 1

4
.
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