Chapter 7.4 Solving Linear Homogeneous Recurrence Relations

Definition Linear recurrence relation of order k is a sequence h_{n} defined as

$$
h_{n}=a_{1} h_{b-1}+a_{2} h_{n-2}+\cdots+a_{k} h_{n-k}+b_{n}
$$

where $a_{k} \neq 0, a_{i} \in \mathbb{R}$ and $h_{0}, h_{1}, \ldots, h_{k-1}$ are given. If $b_{n}=0$, recurrence is called homogeneous.
1: Let Fibonacci numbers be defined as $F_{n}=F_{n-1}+F_{n-2}, F_{0}=0$, and $F_{1}=1$. Is it a linear recurrence relation? Is it homogeneous?

2: Let Derangements be defined as $D_{n}=(n-1) D_{n-1}+(n-1) D_{n-2}, D_{1}=0$, and $D_{2}=1$. Is it a linear recurrence relation? Is it homogeneous?

Recall, Fibonacci numbers satisfy $F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ and we obtained this by trying to solve $F_{n}=q^{n}$ for some constant q.
Goal: Solve many recurrence relations in form q^{n}.
Theorem 7.4.1 Let $q \neq 0$, Then $h_{n}=q^{n}$ is solution to

$$
h_{n}=a_{1} h_{b-1}+a_{2} h_{n-2}+\cdots+a_{k} h_{n-k}
$$

iff

$$
x^{k}-a_{1} x^{k-1}-a_{2} x^{k-2}-\cdots-a_{k}=0 \text { (this is called characteristic equation) }
$$

has q as a root, called characteristic root. If the characteristic equation has distinct roots q_{1}, \ldots, q_{k}, then

$$
h_{n}=c_{1} q_{1}^{n}+c_{1} q_{2}^{n}+\cdots+c_{k} q_{k}^{n}
$$

where $c_{i} \in \mathbb{C}$. Constants c_{i} help with fitting the initial values of the sequence.
3: Prove Theorem 7.4.1

4: Solve the following recurrence relation:

$$
h_{n}=2 h_{n-1}+h_{n-2}-2 h_{n-3}
$$

with $h_{0}=1, h_{1}=2, h_{2}=0$.

5: Solve the following recurrence

$$
h_{n}=h_{n-1}+2 h_{n-2}
$$

with $h_{0}=2$ and $h_{1}=7$.

Solution using generating functions Idea: Find generating function $g(x)$ for h_{n} and then read $\left[x^{n}\right] g(x)$.
Recall

$$
\frac{1}{(1-r x)^{n}}=\sum_{k=0}^{\infty}\binom{-n}{k}(-r x)^{k}=\sum_{k=0}^{\infty}\binom{n+k-1}{k} r^{k} x^{k}
$$

6: Solve the following recurrence using generating functions

$$
h_{n}=5 h_{n-1}-6 h_{n-2}
$$

$h_{0}=1$ and $h_{1}=-2$.

7: Solve the following recurrence using generating functions

$$
h_{n}=h_{n-1}+2 h_{n-2}
$$

with $h_{0}=2$ and $h_{1}=7$.

