MATH-566 HW 6

Due Oct 7 before class. Just bring it before the class and it will be collected there.

1: (*Simplex method test*)

Use simplex method on the following program:

$$(P) \begin{cases} \text{maximize} & x_1 \\ \text{subject to} & x_1 - x_2 \leq 1 \\ & -x_1 + x_2 \leq 2 \\ & & x_1, x_2 \geq 0 \end{cases}$$

What is happening in the computation?

2: (Ellipsoid method for solving linear programs) How would you solve a program (P) = maximize $\mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$ using the ellipsoid method with an $\varepsilon > 0$ error? (Suppose both (P) and its dual (D) are superconsistent.) (Hint: How to formulate the linear program as finding a point in a polytope? Use dual

program and ε to guarantee full dimension.)

3: (Analytic center)

Let S be defined as intersection of halfspaces $x_i \ge 0$ and $(1 - x_i)^k \ge 0$. Suppose $i \in \{1, 2, \ldots, d\}$ and $k \ge 1$ is odd. Compute the analytic center of S. Notice that for x satisfying $(1 - x_i)^k \ge 0$, the function $(1 - x_i)^k$ is convex.

4: (*Central path*)

Compute central path for the following problem

$$(P) \begin{cases} \text{minimize} & -x_1\\ \text{subject to} & x_1 \le 1\\ & x_2 \le 1\\ & x_1 \ge 0\\ & x_2 \ge 0 \end{cases}$$

and find the optimal solution using the central path. Plot (sketch) the set of feasible solutions and the computed central path.