Why Are We Learning Calculus I?

- It is prerequisite?
- ► It is mandatory?

What Does Approaches Means?

If f(x) approaches L as x approaches a we write

 $\lim_{x\to a} f(x) = L$

What is the *distance* between x and y?

```
As x gets close to a then f(x) getsAsdecreases thenclose to L.decreases.We want f(x) close to L for all xAsis small for all x wherevery close to a.is tiny.
```

Think of ε and δ as (very) small distances.

```
We want f(x) being \varepsilon-close to L for for all x where all x being \delta-close to a.
```

What Does Approaches Means with ε and δ ? If f(x) approaches L as x approaches a we write

 $\lim_{x\to a} f(x) = L$

We want f(x) being ε -close to L for all x being δ -close to a. $|f(x) - L| < \varepsilon$ for all $0 < |x - a| < \delta$

We can make $|f(x) - L| < \varepsilon$ for any $\varepsilon > 0$ as long as $0 < |x - a| < \delta$ for some $\delta > 0$

 $\lim_{x\to a} f(x) = L \text{ if }$

for every $\varepsilon > 0$ exists $\delta > 0$ so if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

Game approach:

Game approach? $\lim_{x \to a} f(x) = L \text{ if }$

for every $\varepsilon > 0$ exists $\delta > 0$ so if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

Game approach: You give me $\varepsilon > 0$ and I will find you a good $\delta > 0$

Example: Is it true that
$$\lim_{x \to 0} f(x) = \begin{cases} x - 1 & x < 0 \\ 0 & x = 0 \\ x + 1 & x > 0 \end{cases}$$

$\varepsilon,\,\delta$ Examples

Example: Show $\lim_{x \to a} c = c$.

Example: Show
$$\lim_{x \to a} 2 + x^2 = 1$$

Example: Show $\lim_{x \to a} x = x$.

More Rigorous Sum Of Limits

Example: Show that if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ then $\lim_{x \to a} f(x) + g(x) = L + M$. Recall: For given $\varepsilon > 0$ find $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) + g(x) - L - K| < \varepsilon$. Trick: $|f(x) + g(x) - L - K| \le |f(x) - L| + |g(x) - M|$ (triangle inequality) $\lim_{x \to a} f(x) = L$ implies

 $\lim_{x \to a} g(x) = M \text{ implies}$

Pick $\delta =$. Then for all $|x - a| < \delta$ holds

Chapter 2.3 Recap

- There exists a rigorous definition of a limit.
- Can be played as a game: for given ε find δ .
- Not part of midterm or final.
- More about this in MATH-201 Introduction to proofs and MATH-414 (Analysis I)