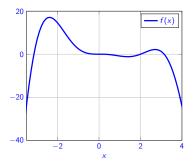
Chapter 2.5 - Continuous Functions

Motivation for Continuous Function

Recall: For polynom P(x) holds $\lim_{x\to a} P(x) = P(a)$.

What should happen at $x \to a$ happens at x = a.



This is a nice property and behavior, called *continuous*.

$$f(x)$$
 is continuous at $x = a$ if $\lim_{x \to a} f(x) = f(a)$

Some Continuous Functions

If f is continuous at a, the following three MUST ALL happen:

- $\blacktriangleright \lim_{x \to a} f(x) \text{ exists}$
- ightharpoonup f(a) exists
- $\blacktriangleright \lim_{x \to a} f(x) = f(a)$

If any of them fail, f is not continuous at a.

The following are continuos at all points

- Polynomials
- ▶ Rational functions where denominator \neq 0.
- \triangleright sin x, cos x, e^x ,
- $ightharpoonup \ln x$ for x > 0

Intuition: If you can draw the graph of f around a with one stroke, then f is continuous at a.

Types of Discontinuity

Removable by (re)defining the function at x = a, we can fix the problem.

Example: Is $f(x) = (x^2 - 1)/(x - 1)$

continusous at x = 1?

It is not defined at x = 1, but

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

Removable discontinuities are great because we can "fix" them. The piecewise-defined function

$$F(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1 \\ 2 & x = 1 \end{cases}$$

is basically the function f, but with the open hole at x=1 filled in.

Jump, left and right hand limits exist but disagree.

Example:

$$f(x) = \begin{cases} x+3 & x < 1 \\ 2 & x = 1 \\ 2x-2 & x > 1 \end{cases}$$

at x = 1.

$$\lim_{x \to 1^{-}} f(x) = 4$$

$$\lim_{x \to 1^{+}} f(x) = 0$$

Hence $\lim_{x\to 1} f(x)$ does not exist.

More Types of Discontinuity

Oscilating if limit does not exist due to oscilating.

Example:

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x > 1\\ 0 & x \le 0 \end{cases}$$

at x = 0.

$$\lim_{x \to 0^{-}} f(x) = 0$$

$$\lim_{x \to 0^{+}} f(x) \text{ does not exist}$$

Hence $\lim_{x\to 0} f(x)$ does not exist.

Infinite Discontinuity appears when asymptote from one (or both) sides. More in next section.

Example:

$$f(x) = \begin{cases} \frac{1}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

at x = 0.

$$\lim_{x \to 0^{-}} f(x) = \infty$$
$$\lim_{x \to 0^{+}} f(x) = \infty$$

Hence one could say $\lim_{x\to 0} f(x) = \infty$ but we cannot have $f(x) = \infty$.

Continuous Function

A function is *continuous* if it is continuous at *every* point.

Intuition: If you could draw the graph of f with one stroke.

Example: Find a and b so that f(x) is continuous and

$$f(x) = \begin{cases} x < -1 \\ ax + b & -1 \le x \le 1 \\ x > 1 \end{cases}$$

Combining Continuous Functions

If f(x) and g(x) are continuous then so are

$$f(x) + g(x)$$

▶
$$Kf(x)$$
 for $K \in \mathbb{R}$

$$(f(x))^q$$
 for reasonable q

ightharpoonup f(g(x)) composition

Example: Is f(x) continuous?

$$f(x) = \frac{\sin(e^x + \pi - 1) + x^3 - 16\cos(\sin(x))}{x^4 + 2 + \sin^2(e^x - e^{-x}) + \ln(x^2 + 1)}$$

Yes. The functions $\sin x$, e^x , $\cos x$ are continuous. Also ln x is continuous for x > 0 and notice that $x^2 + 1 > 1$. In particular $\ln x^2 + 1 > 0$. Hence the

continuous. Nice fact about continuous functions:

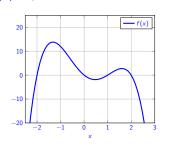
$$\lim_{x \to a} f(x) = f(a)$$

Example: Given f(x) above find $\lim_{x\to 0} f(x) =$ $\frac{\sin(\pi) + 0 - 16\cos(0)}{0 + 2 + \sin^2(0) + \ln(1)} = -8$

denominator is > 0 and f(x) is

Intermediate Value Theorem

If f(x) is **continuous** on [a, b], then for any y between f(a) a f(b) there is a c in [a, b] with f(c) = y.



If f(x) is *continuous* on [a, b], Example: $f(x) = 18x^3 - 63x^2 + 67x - 20$ then for any y between f(a) and Does f(x) have a roof for 0 < x < 1? f(x)

is continuous. Also f(0) = -20 and f(1) = 2. The IVT implies there is $a \in I$

f(1) = 2. The IVT implies there is $c \in [0, 1]$ such that f(c) = 0. Actually, $c = \frac{1}{2}$. Does f(x) have a roof for $1 \le x \le 2$?

Does f(x) have a roof for $1 \le x \le 2$? f(1) = 2 and f(2) = 6. The IVT does not say anything about the roots! There are two roots $\frac{4}{3}$ and $\frac{5}{3}$.

Example: Show exists $0 \le x$ that $\cos(x) = x$. Let $f(x) = \cos(x) - x$. Using

x = 0 and $x = \frac{\pi}{2}$ yields

$$f(0) = \cos(0) - 0 = 1$$
 $f(\frac{\pi}{2}) = \cos(\frac{\pi}{2}) - \frac{\pi}{2} = -\frac{\pi}{2}$

As 0 in $\left[-\frac{\pi}{2},1\right]$, the intermediate value theorem implies that there exists a c in $\left[0,\frac{\pi}{2}\right]$ such that $0=f(c)=\cos(c)-c$ and thus $\cos(c)=c$.

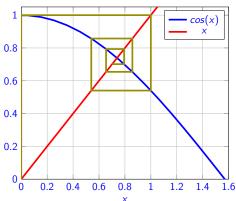
5.

$\cos(\cos(\cos(\cos(\cos(x)...)))$

What happens when you type to calculator ${\bf 0}$ and keep pressing ${\bf cos}$ button? (in Rad)

Let's move between points

 $(0,0),(0,\cos(0)),(\cos(0),\cos(0)),(\cos(0),\cos(\cos(0))),(\cos(\cos(0))),\cos(\cos(0)),\ldots$



Notice the green spiral is behaving like a fractal.

.

Chapter 2.5 Recap

- ▶ f(x) is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$
- f is continuous if it is continuous at every point
- ► Removable discontinuity, jump, oscillation, asymptotes (next time)
- combining continuous functions gives continuous function
- ► Intermediate Value Theorem