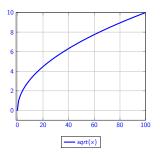
Chapter 3.11: Linearization and Differentials

Motivational Question

Example: Estimate $\sqrt{65}$ without using calculator.

Approximate \sqrt{x} using linear function!



Linearization

If y = f(x) is differentiable at x = a, then

L(x) = f(a) + f'(a)(x - a)

is the line tangent to f at the point (a, f(a)). We call this the *linearization* of f(x) at x = a.

Example: Find the linearization of the following functions at the specified point:

•
$$f(x) = x^3 - 2x + 3$$
 at $a = 2$

•
$$f(x) = x + 1/x$$
 at $a = 1$

•
$$f(x) = \tan(x)$$
 at $a = \pi$

Approximation Examples L(x) = f(a) + f'(a)(x - a)

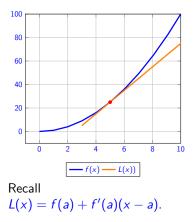
Find approximations for the following values:

1. $\sqrt{1.1}$ exact value is ≈ 1.0488088481 .

2. sin(.01) exact value is ≈ 0.00999983 .

Approximation and Small Changes Let L(x) be a linearization of f(x) at point *a*.

If x = a is changed by Δx , what is change ΔL in L(x)?



Differentials

Leibniz says that we can treat $\frac{dy}{dx}$ like a fraction and write a formula for dy in terms of dx and f'(x). This is known as the *differential* form of the derivative.

Find the differential form of the derivative of the following (use dy and dx for derivative of x and y):

1. $y = \sqrt{1 - x^2}$

2.
$$xy^2 - 4x^{3/2} - y = 0$$

3. Use implicit differentiation on $xy^2 - 4x^{3/2} - y = 0$

Approximation With Differentials Example

1. Approximate $\sqrt[3]{1.009}$ using differentials and $f(a + dx) \approx f(a) + dy$

2. Approximate $\sqrt[3]{1.009}$ using L(x) = f(a) + f'(a)(x - a).

 $\sqrt[3]{1.009} = 1.0029910447317696162055702742437385366236726998841849434\dots$