
Chapter 3.2 - The Derivative as a Function
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Recall The Derivative at a Point

The derivative of a function f at a point x0, denoted f ′(x0), is

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h

provided this limit exists.

f ′(x0) can be interpreted as

I The slope of the graph of y = f (x) at x = x0
I The slope of the tangent to the curve y = f (x) at x = x0
I The rate of change of f (x) with respect to x at x = x0

3.2. 2



The Derivative of f

Try to compute f ′(x0) for all x0 at once.

The derivative of a function f (x) is a function f ′ defined as

f ′(x) = lim
h→0

f (x + h)− f (x)

h

provided this limit exists.

Alternatively, making the change of variables z = x + h:

f ′(x) = lim
z→x

f (z)− f (x)

z − x

f is differentiable if the derivative is defined for all x
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Example
Use f ′(x) = lim

h→0

f (x + h)− f (x)

h
to

compute the derivative of f (x) = x2

f ′(x) = lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2hx + h2 − x2

h

= lim
h→0

2hx + h2

h

= lim
h→0

2x + h = 2x

Use f ′(x) = lim
z→x

f (z)− f (x)

z − x
to

compute the derivative of f (x) = x2

f ′(x) = lim
z→x

z2 − x2

z − x

= lim
z→x

(z − x)(z + x)

z − x

= lim
z→x

z + x = 2x .
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Example 2
Use f ′(x) = lim

h→0

f (x + h)− f (x)

h
to

compute the derivative of g(t) =
√
t

g ′(t) = lim
h→0

√
t + h −

√
t

h

= lim
h→0

√
t + h −

√
t

h
·
√
t + h +

√
t√

t + h +
√
t

= lim
h→0

t + h − t

h[
√
t + h +

√
t]

= lim
h→0

1√
t + h +

√
t

=
1√

t +
√
t

=
1

2
√
t

Use f ′(x) = lim
z→x

f (z)− f (x)

z − x
to

compute the derivative of h(r) =
1

r

h′(r) = lim
z→r

1
z −

1
r

z − r

= lim
z→r

1
z −

1
r

z − r
· zr
zr

= lim
z→r

r − z

(z − r)zr

= lim
z→r

−1

zr

= − 1

r2
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Function and Operator
Function

input

magic

output

Derivative Operator

function

derivator

function

There are many ways to denote the derivative of y = f (x).

Here’s some common alternative notations:

f ′(x) = y ′ =
dy

dx
=

df

dx
=

d

dx

[
f (x)

]
= D(f )(x) = Dx [f (x)]
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Where Derivative Does NOT Exists

Derivative not existing is like tangent not existing.
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Graphing the Derivative
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Graphing f from f ′
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Continuity and Derivative

Theorem (Differentiability Implies Continuity)

If f has a derivative at x = a then f is continuous at a.

Proof: Suppose that f is differentiable at x = a, then

lim
x→a

f (x) =

lim
x→a

[f (x)− f (a) + f (a)]

= lim
x→a

[
f (x)− f (a)

x − a
· (x − a) + f (a)

]
= f ′(a) · 0 + f (a) = f (a)

Note that the order matters here: if differentiable, then continuous.

The converse of this statement is not true!

There are very scary continuous function that are differentiable nowhere.

Most functions are actually very scary!
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Weierstrass function f (x) =
∑∞

n=0 a
n cos(bnπx)
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Looks like a fractal. Zooming in is NOT getting f closer to a line.
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One-sided Derivatives

Recall: Limit exists if both one-sided limit exists and are equal.
Useful if the derivative does not exist, such ass on the boundary of the domain.

Example: Compute one-sided derivative of f (x) = |x | at x0 = 0

From the left:

lim
h→0−

f (x0 + h)− f (x0)

h

= lim
h→0−

f (0 + h)− f (0)

h

= lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

−h
h

= −1

From the right:

lim
h→0+

f (x0 + h)− f (x0)

h

= lim
h→0+

f (0 + h)− f (0)

h

= lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

h

h
= 1
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Chapter 3.2 Recap

I Derivative of f is a function whose values are slopes of tangents to f

I f ′(x) = lim
h→0

f (x + h)− f (x)

h

I Derivative does not have to exists

I One sided version of derivative
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