Chapter 3.3: Differentiation Rules



Basic Functions (compute them once and for all)
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Combining Functions |

Pulling out constants Separating over sums
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Examples
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Find — { + eloo}
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Find tangent line at x = 1 to function f(x) = x> + /x — 2e*.

Find all x so that the tangent lines to y = x3 — 12x + 17 are horizontal.



Product Rule
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= f'(x)g(x) + f(x)g'(x)
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Reciprocal and Quotient Rules

Reciprocal rule

Will be obvious after Chain rule in Section 3.6.
Quotient rule
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Examples for Quotient Rule
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Higher Order Derivatives

Derivatives are functions so we can take derivatives of derivatives, and so on.

Example: Compute derivatives of
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More Examples

Example: Find derivatives of
f(x)=(7—2x)-(5+x3)7!

f(x)=e~
f(x) = e
F(x) = 1—2x+4y/x
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Example: Find second derivative of f(x) =
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Chapter 3.3 Recap

PV £ s th d derivati
ﬁ[ (x)] is the second derivative



