Chapter 4.1: Extreme Values of Functions

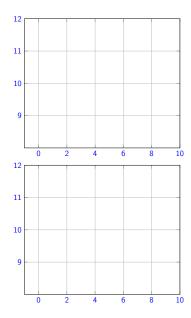
Maximum and Minimum

▶ f has an *absolute maximum* at c if $f(x) \le f(c)$ for all x.

f has an absolute minimum at c if
f(x) ≥ f(c) for all x.

▶ f has an *local maximum* at c if $f(x) \le f(c)$ for all x near c.

• f has an local minimum at c if $f(x) \ge f(c)$ for all x near c.



Derivatives Help

► If f'(c) > 0, then near c our function f is going up.

- A point c is critical point if
 - f'(c) is undefined
 - f'(c) = 0
 - c is a boundary point

If f'(c) < 0, then near c our function f is going down.</p>

A (local) extreme can only occur at a critical point.

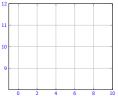
Example: Find all critical points of $x^{2/3}e^{-x/3}$ for $-1 \le x \le 5$. T ON THE

If f'(c) ≠ 0 and c is NOT ON THE BOUNDARY, then c is not a local min or max.

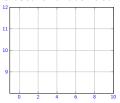
Existence of Extreme Points Extreme Value Theorem

A continuous function on a closed and bounded interval (e.g. $a \le x \le b$) has an absolute min and absolute max.

Continuous is necessary



Closed and bounded in necessary



If we have a continuous function f on a closed bounded interval, we can find the absolute max and absolute min by the following procedure:

- Find all critical points
- Evaluate f at critical points
- Larges value = absolute max smallest value = absolute min

Example: Find absolute min and max of $f(x) = x^2 - x$ on [0, 1]

Examples

Find absolute max and min of $g(x) = 2x^3 - 9x^2 + 12x + 6$ on [2,3] $f(x) = \sqrt{4 - x^2}$ on [-2,1]

Examples

Find absolute max and min of $f(x) = |x^2 - 4x - 5|$ for $0 \le x \le 6$

$$g(t) = t^8 e^{-t^2}$$
 for $-1 \le t \le 10$

Examples

Find absolute max and min of $g(x) = 1/(x - 3/4) + \ln(x)$ on [1,4].