
Chapter 4.2: The Mean Value Theorem

4.2. 1



Rolle’s Theorem

If f (x) is a function so that

I f (a) = f (b)

I continuous for a ≤ x ≤ b

I differentiable for a < x < b

then for some c where a < c < b we
have f ′(c) = 0.
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Idea: f must achieve and absolute
max/min. These are at critical points
and at least one is not an endpoint so
must be where derivative of f is 0.

Differentiable is necessary
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No c with f ′(c) = 0. |x | for x ∈ [−2, 2]

Example: f (x) = x3− 7x , a = −3, b = 1

Notice f (−3) = f (1) = −6.
Noe f ′(x) = 3x2 − 7. We want c such
that 0 = f ′(c) = 3c2 − 7.

It gives c = ±
√

7
3 . Since a < c < b,

c = −
√

7
3 .
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Mean Value Theorem

If f (x) is a function that is

I continuous for a ≤ x ≤ b

I differentiable for a < x < b

then for some c where a < c < b we
have

f ′(c) =
f (b)− f (a)

b − a

Idea: Instantaneous rate of change at c
is equal to the average rate of change for
a ≤ x ≤ b.

Rolle’s Theorem, but slightly tilted.

Example:
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Note: The mean value theorem has been
used by law enforcement to catch
speeders!
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Examples f ′(c) = f (b)−f (a)
b−a for c ∈ (a, b)

Verify the mean value theorem for
h(x) = ln(x − 1) for a = 2 and
b = e + 1

The average rate of change is

h(e + 1)− h(2)

e + 1− 2
=

1

e − 1

and the derivative is h′(x) = 1/(x − 1).
Consequently, we wish to solve

1

e − 1
=

1

c − 1
−→ c = e

f (x) = 2x
2x+1 , a = 0, b = 1

The average rate of change is

f (b)− f (a)

b − a
=

2
3 − 0

1− 0
=

2

3

Now the derivative

f ′(x) =
2(2x + 1)− 2x(2)

(2x + 1)2

=
2

(2x + 1)2

Solve f ′(c) = 2
3 .

2

3
=

2

(2c + 1)2
3 = (2c + 1)2

c =
±
√

3− 1

2
c =

√
3− 1

2
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Consequences of f ′(c) = f (b)−f (a)
b−a for c ∈ (a, b)

I If f ′(x) = 0 for all a < x < b, then
f is constant on (a, b). That is
f (x) = c .

Let a < y < x < b. By mean value
theorem

f (x)− f (y)

x − y
= f ′(z) = 0.

This implies f (x) = f (y).

I If f ′(x) = g ′(x) for all x ∈ (a, b),
then there is a constant C such that

f (x) = g(x) + C

for all x ∈ (a, b).

Define G = f − g . Then for any
x ∈ (a, b), we have

G ′(x) = f ′(x)− g ′(x) = 0

By the previous point, it follows
that f (x)− g(x) = G (x) = C for
all x in (a, b).

If two derivatives are equal, they came from functions which differ by a constant.
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Examples
Consider

f (x) = ln x g(x) = ln(ax)

Show f ′(x) = g ′(x) and determine C so
that f (x) = g(x) + C .

f ′(x) =
1

x
g ′(x) =

1

ax
· a =

1

x

Notice f (x) and g(x) differ by the same
constant everywhere. So we can pick for
example x = 1 and get

C = f (1)− g(1) = ln 1− ln a = − ln a

Hence f (x) = g(x)− ln a.
We can check that
g(x) = ln(ax) = ln a + ln x

Find all function f (x) whose derivative is
cos(x) on (−∞,∞).

Let g(x) = sin(x). Then

g ′(x) = cos(x) = f ′(x)

on (−∞,∞) and so

f (x) = sin(x) + C

for some constant C .
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Examples
Find all function f (x) whose derivative is
1/x on (0,∞) and f (1) = 0.

Let g(x) = ln(x), then

g ′(x) = 1/x = f ′(x)

on (0,∞) and thus f (x) = ln(x) + C .
Since 0 = f (1), it follows that the only
function with this property is

f (x) = ln(x).

Given that the velocity is v = 32t − 2 on
(0, 1) and s(1/2) = 4, find an equation
for the position function s(t) for t in
(0, 1).

Let g(t) = 16t2 − 2t, then

g ′(t) = 32t − 2 = v

on (0, 1) and so

s(t) = 16t2 − 2t + C .

Plugging in 4 = s(1/2) then yields

4 = s(1/2) = 4− 1 + C = 3 + C

and so C = 1. Therefore, the position on
(0, 1) is

s(t) = 16t2 − 2t + 1.
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