Chapter 4.7: Newton's Method

Newton's Method - Idea

Goal:

Get approximation of roots. That is, solve f(x) = 0.

Idea:

It is easy to find a root of a line. If we have a reasonable guess, we can improve it by approximating f by a tangent line.

Use: Recall, for min/max of f, we need to solve f'(x) = 0.

Newton's Method - Formula

Outline of the method:

Start with an initial guess and keep improving it.

Good initial guess is important!

- Start with initial guess x_0 .
- Repeatedly apply the following formula to get (hopefully) better approximations.

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

 Stop when approximation is sufficient.
Or after some number of steps, or if it starts exploding.

Example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Example: Approximate $\sqrt{2}$

This method will not find the exact root, only (good) approximation.

Example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Example: Approximate 2x = cos(x) starting with $x_1 = 0$.

Example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Example: Approximate $x^3 - x = 1$ starting with x = 1.

starting with x = 0.

Fails

Newtons method may fail in many ways, such as division by zero, converging to a different root, not converging at all or even diverging. Initial guess is important!

Converging to a different root

Not converging at all

I promise that this is very rare and Newton's method is great!

Failing example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Try Newton's method for

$$f(x) = \sqrt{|x|}$$

with initial guess $x_1 = 1$. Note that

$$f'(x) = \frac{1}{2\sqrt{|x|}} \cdot \frac{x}{|x|} = \frac{x}{2|x|\sqrt{|x|}}.$$