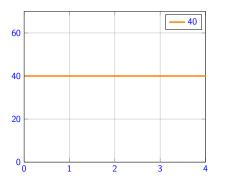
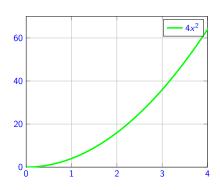
Chapter 5.1: Area and Estimating with Finite

Sums

Introduction



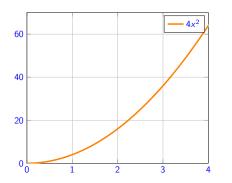


Motivation

Differential Calculus

How are things changing?

Idea: We know how lies are changing.

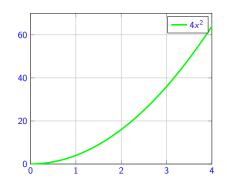


Approximate a function by a line and say it is changing like a line.

Integral Calculus

How much is there?

Problem: Compute the area under f(x).



What is easy for computing area? How to approximate the area under f(x)?

1.

Riemann Sums

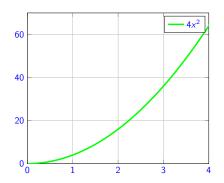
Given a function y = f(x) approximate the area under the curve for $a \le x \le b$.

Partition $a \le x \le b$ into some (usually equally sized) intervals

$$a = a_0 < a_1 < a_2 < \dots < a_n = b$$

Approximate the area under f(x) for $a_{i-1} \le x \le a_i$ by a rectangle.

width = height =



Combining the areas of rectangles we get area \approx

5.1

How to pick x_i ?

$$a = a_0 < a_1 < a_2 < \cdots < a_n = b$$

$$a_{i-1} \leq x_i \leq a_i$$

$$A \approx f(x_1)\Delta_1 + f(x_2)\Delta_2 + \cdots + f(x_n)\Delta_n$$

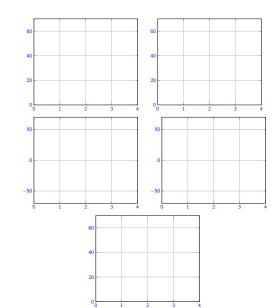
How to pick x_i ? Options:

- left end: $x_i = a_{i-1}$
 - ▶ right end: $x_i = a_i$
 - ► midpoint:

$$x_i = \frac{1}{2} (a_{i-1} + a_i)$$

- max value: (varies)
- ▶ min value: (varies)

All approximate the area

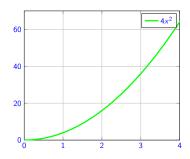


Example

Estimate the area under $f(x) = 4x^2$ for $0 \le x \le 4$ by Reimann sums with four equally spaced intervals and using

left end points

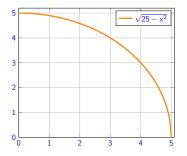
▶ right end points



midpoints

Example

Estimate the area under the curve $f(x) = \sqrt{25 - x^2}$ for $0 \le x \le 5$. Use Riemann sums with five equal intervals and give an upper and lower estimate for the area.



Demo

http://demonstrations.wolfram.com/RiemannSums/