Derivatives of inverse functions

Graphically a function is related to its inverse by
flipping across the line y = x (i.e., interchanging the
roles of x and y. In particular a tangent line to f(x)
at (a,f(a)) will when flipped across the line y = x
will become a tangent line to f~'(x) at (f(a), a). We
can make this precise by using implicit differentia-
tion. Namely if y = f~'(x) then we have x = f(y),
taking the derivative of both sides have 1 = f’ (y)%,
or rearranging:

RN
a(f (X)) - /(y) - f’(fq(x))

So when there is a function which has a derivative,
we can now find the derivative of the inverse func-
tion. As a simple example, take the exponential func-
tion f(x) = e* which has as its inverse f~'(x) = Inx.
Since the derivative of e* is again e* we have
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More generally:
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Combining these results with the chain rule and basic
algebra we also have the following:
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Logarithms are very useful, they satisfy several
nice properties, i.e., In(ab) =Ina+Inb and In(a®) =
blna. This allows us to take a complicated expres-
sion composed by multiplying multiple functions
and/or raising functions to a function and then tak-
ing a log to simplify expressions. This is known as
logarithmic differentiation. As a simple example con-
sider y = x*. First we take the log of both sides
giving Iny = xInx and now we take derivatives
of both sides, i.e., }‘JL/ = Inx + x% = Inx+1 or
y' =y(lnx+1) =x*(Inx + 1).

Inverse trig functions

Among the inverse functions that will prove use-
ful are the inverse trig functions (sometimes denoted
with “arc”). The key is to use various trig identities
to rewrite our expressions. As an example (a per-
sonal favorite!) if y = arctanx then x = tany or tak-
ing the implicit derivative we have 1 = (sec?y)y’ or
y' =1/sec?y = 1/(tan’*y + 1) = 1/(x* + 1). Similar
analysis gives the other inverse trig functions and so
we have the following.

1
1. —(arctanx) = T2
2. — (arcsinx) = 1
V1 —x2
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3. a(arcsecx) =T

Related rates

Derivatives measure rate of change. In many prob-
lems it often occurs that the change of one variable
will be connected with the change of another vari-
able; in particular if we know how one of the vari-
ables is changing we should be able to say something
about how the other variable is changing since their
rates of change are related. Related rate problems
are usually easy to identify since they will give a rate
and ask for another rate.

There is a slight twist compared to what we did
previously in that we usually think of how something
changes with time and so instead of taking a deriva-
tive with respect to one of our variables we will al-
most always take it with respect to time t (or some
similarly appropriate variable), so it is important to
have the chain rule and to apply it correctly.

In general there are a few simple steps to solve a
problem about related rates.

1. Find a relationship (i.e., an equation) between
the variables that are changing. It often helps to
draw a picture if one is possible. There are only a
few handful of variations that we will encounter.
Most involve either the Pythagorean Theorem,
similar triangles or areas and volumes of basic
shapes. (You will be expected to know the area
of rectangles and circles and triangles, and the
volumes of boxes and cylinders.)

2. Take the derivative (of both sides) with respect
to t to get a relationship for the rates.

3. Plug in all the values that you know to find the
value that you are looking for.

The hardest part about these problems is almost
always finding the relationship. Another thing to
watch out for is they may only give the value for one
variable, in which case you might need to solve for
the value of the other variable using the relationship.
Finally, an important tool in solving this type of prob-
lem is being able to strip out all the unnecessary in-
formation and translating a word problem into some-
thing like a calculus problem (“math-a-nese”).

A classic example is a 10 foot ladder that is sliding
down a wall and you notice that when the bottom
of the ladder is 6 feet from the wall that it is sliding
away from the wall at a rate of 1 foot per second.
How fast is it sliding down the wall? To answer this



we can draw a simple picture and see that the ladder
the floor and the wall make a right triangle with a
fixed hypotenuse of length 10. If we let x denote the
distance of the bottom of the ladder to the wall and
y the height of the ladder then we have x* + y? =
100 (note that when x = 6 it is easy to see from this
relationship that y = 8). The fact that the ladder is
moving away from the wall tells us that dx/dt = 1
and that we are after dy/dt. Taking the derivative
of both sides we have 2x%* + 2y4¥ = 0. Plugging
in what we know we have 2-6-1 + 2-8~% = 0 so that

% = —2 feet per second.

Note that units will always do what you think they
should do. And so we do not need to keep track of
them in our calculations if we know what the end
units should be, they will work themselves out cor-

rectly!

Quiz 7 problem bank

1. Find -+ (In (In (Infx)).
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3. Given that f(x) = x3 4+ ¥, and that
g(x) = f~1(x), find ¢’(2).

4. Find die (In(sec® + tan 0)), simplify the answer

as much as possible.

5. Find %(arctanx — Jarctan (3 (x — %))) for

x # 0, simplify the answer as much as possible.

6. From a small island in the middle of a large
lake you set out in a canoe and head east, and a
short time later your friend sets out in a canoe
and heads north. After a few hours your friend
calls you on your walkie-talkie to see how far
you have gone. You respond “I am fine, but
haven’t kept track of distance but right now I
am going at a speed of one mile per hour.”
Your friend comments back, “That’s pretty
good, I have gone a few miles and right now
am only doing one-third of a mile per hour.”
Glancing at your walkie-talkie you see that it is
indicating that you and your friend are
currently five miles apart and are moving apart
from each other at a speed of one mile per hour.
Find the distances that you and your friend
have traveled in the canoe.

7. While studying for the quiz some students
decide to take a break and bake brownies. They
stir the brownie batter in a bowl which has a
hemispherical shape with a radius of 5 inches,
they then pour it into the only pan they have
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which is a large circular cake pan (i.e., the
shape of a cylinder) which is 12 inches in
diameter and 2 inches deep. One student
observes that the depth of the batter in the pan
raised at a constant rate of 1/6 of an inch per
second. Find the rate at which the depth of the
batter is falling in the mixing bowl when the
depth of the batter in the mixing bowl is 3
inches. (Hint: the volume of batter of depth h in
a hemispherical bowl with radius r is

ni(th? — Ih3))

Starfleet intelligence has recently learned of a
new threat. A new Borg vessel has been
discovered that can change its shape, they are
calling it the B-1000 (short for Borg-1000). The
B-1000 has some limitations, first the only shape
it can have is a three dimensional box and
second the volume is always fixed, i.e., the box
cannot deviate from a fixed volume. From an
earlier observation you saw that the B-1000 had
dimensions 20 meters by 15 meters by 10
meters. Currently though you can only see two
sides. You notice that the length is currently 12
meters and is increasing at a rate of 1 meter per
minute; the width is currently 25 meters and is
decreasing at a rate of 2 meters per minute.
What is the current depth of the B-1000 and
how fast is it changing?

While visiting family you attend a pumpkin
drop, an event where a very large pumpkin is
lifted by a crane to a height and then dropped
resulting in a beautiful moment of pumpkin
explosion. You pull out your camera to record
the pumpkin from the moment it is released
and follow it down until it hits the ground. You
happen to notice that you are standing 32 feet
away from where the pumpkin will land, and
you also notice that the pumpkin is being lifted
to a height of 64 feet before being dropped.
Knowing your basic physics you determine the
pumpkin’s height at a given time t will be

64 — 16t? where t is the number of seconds after
the pumpkin is dropped. If 6 measures the
angle of elevation your camera makes with the
ground, what is 4% at the moment the pumpkin
will hit the ground?

A particle moves along the curve implicitly
defined by xy* — yx* = x —y?. When the
particle passes through the point (1,1) its x
coordinate is changing 1/4 units per second.
How fast is the y coordinate changing?



