Linear approximation

Sometimes we do not need the exact value of a
function (or it might be very hard to compute) but an
estimate will do. In that case we can use the tangent
lines at a point that we understand what is going on
to get an estimate at a point nearby that we want to
know what is going on. (Note a key word to look for
in a problem is “estimate”, if we see it then we know
we are doing some form of linear approximation.)

Recalling one of the definitions of the derivative
we have that at a point a that
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where Af is a small (but measurable!) change in the
function and similarly Ax is a small change in the
input. In particular we have that if x is close to a, i.e.,
Ax is small, then

Af
f'(a) ~ oo Af = f'(a)Ax.

One example of where this might come in is if we
want to estimate the result of a small change in x
will have on the change in f or vice-versa. It also is
useful for getting an estimate on how much error in
our input will effect the error in our output.

If we replace Af by f(x) —f(a) and Ax by x —a and
rearrange then we have

f(x) = f(a) +f'(a)(x — a).

=L(x)

The right hand side, the L(x) also known as the local
linearization, is the same as the tangent line at x =
a and this states that the value of the function for
x near a is approximately the same as the value of
the tangent line. We can use this if we know the
value of the function somewhere near x and want an
estimate for the function at x. For instance suppose
we want an estimate for v/65, we know v64 = 8 and
65 is near 64 and so we will approximate the function
f(x) = /x around a = 64 using the tangent line and
use that to estimate v/65. So for example we have
f'(x) = 1/(24/x) and so for x near 64 we have

Vx = f(64) + ' (64)(x — 64) =8 + ]1—6(x— 64).

So we can conclude that /65 ~ 8 + 11—6 = 8.0625 (the
actual value is 8.06225...).

Sometimes these relationships are expressed using
differential notation, i.e.,

dy = f'(x) dx

where dy and dx are the differentials in y and x.

Global extrema

Extrema are maximums (the largest possible value)
and minimums (the smallest possible value) of the
function. There are two types of extremums. One is
global extremum which says that you are either the
largest or smallest possible value for all x we are con-
sidering. The other is local extremum which says you
are either the largest or smallest possible value for all
x nearby (i.e., if we zoom in close enough and ignore
everything else it is the largest or smallest possible
value). Note that a global extremum is also a lo-
cal extremum but a local extremum might not be a
global extremum.

Extreme Value Theorem: If a function is continuous
on a closed interval (an interval which includes the
endpoints) then the function has a global maximum
and a global minimum on the interval.

Knowing that there is an extreme value is useful,
but we still have to find where it is. One important
observation is that we can use the derivative to help
us locate where the extremums might occur. This is
because the derivative tells us locally what our func-
tion is doing and we can use that information to rule
out points. For example we have the following.

f'>0 ¢— fisincreasing
f'<0 «— fisdecreasing

But if we are at a maximum or a minimum then we
are neither increasing or decreasing (if we were we
would move slightly and be even more maximer or
minimer but those aren’t even words so of course this
is not possible). So we can conclude that if we are at
an extremum that we must be at a point where one
of three things happens: (i) f'(c) = 0; (ii) f'(c) is
undefined; (iii) we are at a boundary (and so unable
to move in one direction). We call these points critical
points.

While extremum will happen at critical points, just
because we are at a critical point does not mean we
are at a minimum or a maximum. For example the
functions y = x® and y = /x both have critical points
at 0, but 0 is not an extremum for either function.

So our method to find Global extrema is as follows:

1. Make a list of x values where the global extrema
can occur.

(a) Endpoints of the interval.
(b) The derivative is 0.

(c) The derivative is undefined.

2. Plug each of the above values into the function.
Largest answer is the global max; smallest an-
swer is the global min.

3. Profit!



Note that while we only have one global maximum
it can occur at multiple points. For instance y = sinx
on the interval 0 < x < 47t has a global maximum of
1 and it occurs at two points, 37 and 3.

Rolle’s Theorem and Mean Value Theorem

Rolle’s Theorem states that if a function is contin-
uous on an interval a < x < b, differentiable for
a < x < b and f(a) = f(b) then there is some point ¢
in between a and b (i.e.,, a < ¢ < b) so that f'(c) = 0.

The Mean Value Theorem takes Rolle’s Theorem and
turns it slightly. Namely, if a function is continuous
on an interval a < x < b and differentiable for a <
x < b then there is some point c between a and b
(i.e., a < ¢ < b) so that

f(b) —f(a)

fle) = b—a

(The right hand side is the slope of the secant line
through (a,f(a)) and (b, f(b)) and also the average
rate of change between a and b while the left hand
side is the slope of the tangent line at ¢ or the in-
stantaneous rate of change. So the theorem says that
if our function is “smooth” then at some point be-
tween a and b our instantaneous rate of change ex-
actly matched the average rate of change.)

An important corollary to the Mean Value Theo-
rem is that if a function has a derivative of 0 on an
interval then the function is constant on that interval.
(Previously we had seen that the derivative of a con-
stant was 0, this says the opposite is also true.) In
particular if two functions have the same derivative
then they must differ by a constant.

Quiz 8 problem bank

1. Fory = 5x3 —4e3*¢, if x = 2 4+ 0.05, use
linearization to estimate the corresponding
range for y.

2. You have recently been hired as the chief
architect for one of the pyramids being
constructed by Pharaoh Sneferu in Egypt. After
some consultation the pharaoh has agreed to a
pyramid design that is 500 cubits wide and 300
cubits high (a cubit is the system of
measurement used in ancient Egypt). The
volume of a pyramid is $b*h where b is the
length of one side of the base and h is the
height; so that the pyramid will require
25,000,000 cubic cubits of stone. After getting
in touch with your stone contractor you
discover that there are only 23,000,000 cubic
cubits of stone available. The pharaoh gives the
go ahead to build a (slightly) smaller pyramid,
but with the same proportions as before.
Estimate how many cubits smaller the base of
the pyramid will end up being.

3. Use linearization to give an estimate for ¥/1018.

4. Use the following information to get an
estimate for g(f(2.1)).

[ x [o[T1[2][3]
f(x) [| =1 3 |02
f'ix) || 1 |-2]3]0
g(x) 3 0 11]2
g'(x) | 1 3122

5. You and a classmate are preparing to give a
presentation in your astronomy course. You
have decided that the best way to show how a
star gets sucked into a black hole is through a
modern interpretive dance where you will be
playing the part of a large blue class O star and
your partner will be the black hole. You will
represent these two astronomical features using
paper mache, and you are responsible for
making your star. Initially you were planning to
blow up a spherical balloon to a diameter of 16
inches before covering it in paper mache, but in
your excitement you ended up blowing the
balloon to a diameter of 17 inches. Using linear
approximation get an estimate of how much
more surface area the 17 inch balloon has as
compared to the 16 inch balloon (i.e., an
estimate of how much more paper you will
need to make your model). (Hint: the surface
area of a sphere of radius r is 47r2.)

6. List all critical points of
g(x) = x?/3(5x% — 8x —40) + 137¢™.

7. List all critical points of f(t) = tv4et — (t + 2)2.

8. Find the global maximum and global minimum
for h(x) = x? — 2arctan(x?) for 0 < x < V/3.
(Hint: h(v/3) = V3 —2m~ —0.3623.)

9. Consider the following function which is
continuous and differentiable for all x (you do
not need to prove this!):

x3 4+ 2x2 —4x +2 ifx <1,
f(x) =
3x—2 if x > 1.
For the interval —4 < x < 2 find all values of ¢

that satisfies the Mean Value Theorem. (Hint:
f(—4) =-14.)

10. Find the unique value c that satisfies the Mean
Value Theorem for the function
f(x) = arctan(sin x) on the interval 0 < x < /2.



