MATH314 HW 5

due Feb 25 before class, answer without justification will receive 0 points. The typing the HW in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is optional.

If question has (No drawing), you must presents a writeup that is complete and correct without using a picture. If you add a figure to (No drawing) question, it will not be treated negatively but you should not refer to it in the solution.

1: \quad Show that there is exactly one positive k such that no graph contains exactly k spanning trees.

2: (a) Find the number of spanning trees in the graph G depicted below
(b) Find the number of spanning trees in the graph G_{k} for $k \geq 5$ depicted below. [Note that (a) is the case where $\mathrm{k}=4 . C_{k}$ stands for a cycle on k vertices.]

3: Let T and T^{\prime} be two spanning trees of a connected graph G of order n. Show that there exists a sequence $T=T_{0}, T_{1}, \ldots, T_{k}=T^{\prime}$ of spanning trees of G such that T_{i} and T_{i+1} have $n-2$ edges in common for each i with $1 \leq i \leq k-1$.

4: Count the number of spanning trees of the depicted graph using Matrix Tree Theorem.

5: Count the number of spanning trees of K_{n} using Matrix Tree Theorem.
6: Let G be a graph, which may also contain loops and multiple edges. Let e be an edge that is not a loop. Define $G-e$ as G with the edge e deleted, and $G: e$ as the graphs arising from G by deleting the edge e and subsequent gluing of the end-vertices of e into a single vertex. The other edges are preserved, and so this operation can produce new loops or multiple edges.
Let $T(H)$ denote the number of spanning trees of graph H.
(a) Prove that $T(G)=T(G-e)+T(G: e)$.
(b) Derive the number of spanning trees of the 3-dimensional cube by a calculation based on (a)

