Spring 2016, MATH-314 http://orion.math.iastate.edu/lidicky/314 Chapters 1.3 and 1.4 - Classes of Graphs

Path P_n of length n-1 has vertices v_1, \ldots, v_n and edges $v_i v_{i+1}$ for all $1 \le i \le n-1$.

 $P_1: \begin{array}{c} \bullet \\ v_1 \end{array} \qquad P_2: \begin{array}{c} \bullet \\ v_1 \end{array} \qquad P_3: \begin{array}{c} \bullet \\ v_1 \end{array} \qquad \bullet \\ v_2 \end{array} \qquad v_3$

Cycle C_n of length *n* if obtained from $P_n = v_1, \ldots, v_n$ by adding edge $v_1 v_n$

Complete graph K_n has *n* vertices and for all $u, v \in V(K_n), uv \in E(K_n)$, i.e. all edges.

1: What is $|E(K_n)|$?

The complement \overline{G} of a graph G is graph where $V(\overline{G}) = V(G)$ and $uv \in E(G)$ iff $uv \notin E(\overline{G})$. Complement of complete graph is **empty** graph (or **independent set**).

Theorem 1.11 If G is disconnected then \overline{G} is connected.

Graph G is **bipartite** if $V(G) = X \cup Y$, where G[X] and G[Y] are empty graphs. **Theorem 1.12** Graph G is bipartite iff G does not contain an odd cycle.

Complete bipartite graph $K_{m,n}$ is a bipartite graph with parts $|V_1| = m$ and $|V_2| = n$ and for all $u \in V_1$ and $v \in V_2$ we have $uv \in E(K_{m,n})$.

 $K_{1,n}$ is called a star.

A graph G is k-partite if V(G) can be partitioned to V_1, \ldots, V_k , where $G[V_1]$ induces an empty graph.

A graph is **complete** *k*-**partite graph** if it is *k*-partite and maximizes the number of edges.

A join G + H is a graph obtained from $G \cup H$ by adding all edges uv, where $u \in V(G)$ and $v \in V(H)$.

A cartesian product of G and H, denoted by $G \square H$ has $V(G \square H) = V(G) \times V(H) = \{(u, v) : u \in V(G), v \in V(H)\}$ and $E(G \square H) = \{\{(u, v), (x, y)\} : u = x \text{ and } vy \in E(H) \text{ or } v = y \text{ and } ux \in E(G)\}.$ Note: different notation that in the book!

A cross product of G and H, denoted by $G \times H$ has $V(G \times H) = V(G) \times V(H) = \{(u, v) : u \in V(G), v \in V(H)\}$ and $E(G \Box H) = \{\{(u, v), (x, y)\} : ux \in E(G) \text{ and } vy \in E(H)\}.$ Note: different notation that in the book!

2: What is $G \boxtimes H$?

3: 1.21 Draw the graph $3P_4 \cup 2C_4 \cup K_4$.

4: 1.25 Let G be a graph of order 5 or more. Prove that at most one of G and \overline{G} is bipartite.

5: 1.27 For the following pairs G, H of graphs, draw G + H, $G \square H$, $G \times H$.

- (a) $G = K_5$ and $H = K_2$;
- (b) $G = \overline{K}_5$ and $H = \overline{K}_3$;
- (c) $G = C_5$ and $H = K_1$.

6: Find graph on n vertices that maximizes the number of edges but has no K_3 as a subgraph.

Multigraph is a graph where edges can have multiplicities (multiedges) and loops (edge vv).Directed graph (or digraph) has edges as ordered pairs rather then sets of size two.Oriented graph is a graph where edges are oriented (directed).

7: What is the difference between directed graph and oriented graph?

Hypergraph is a graph where edges are any subsets of vertices (not just size 2).

Reading for next time: Chapters 1.3, 1.4