Chapter 5.3 Vertex and Edge Cuts

A graph G is 2 -connected if $G-v$ is connected for any $v \in V(G)$ and $|V(G)| \geq 3$.
Theorem (Ear-decomposition) Every 2-connected graph G can be constructed from a cycle by successive addition of paths that have both endpoints in already constructed graph.

The paths in the construction are called ears, one edge is also an ear.
1: Construct a 3D cube and Petersen from cycle by adding ears.

Recall if G is 2 -connected than for every two vertices u, v there exists a cycle in G containing both u and v.
2: Prove the ear decomposition theorem.

Vertex-cut U in a graph G is $U \subset V(G)$ such that $G-U$ is disconnected.
Vertex-connectivity (or connectivity) $\kappa(G)$ is the minimum cardinality of a vertex-cut or $n-1$ if $G=K_{n}$.
Graph G is k-connected if $\kappa(G) \geq k$.
Edge-cut X in a graph G is $X \subset E(G)$ such that $G-X$ is disconnected.
Edge-connectivity $\lambda(G)$ is the minimum cardinality of an edge-cut.
Graph G is k-edge-connected if $\kappa(G) \geq k$.
3: Find $\kappa(G)$ and $\lambda(G)$ for the following graphs.

$G_{7}:$

4: \quad Show that $\lambda\left(K_{n}\right)=n-1$.

Recall that $\delta(G)$ is the minimum of the degrees of vertices in a graph G.
Theorem 5.11 For every graph G

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

5: \quad Show that for every graph $\lambda(G) \leq \delta(G)$.

6: \quad Show that for every graph $\kappa(G) \leq \lambda(G)$.

7: \quad Find a graph G such that $\kappa(G)<\lambda(G)<\delta(G)$.

8: Find $\kappa(G)$ and $\lambda(G)$ for the Petersen's graph.

Recall that cubic graph is a 3 -regular graph, that is every vertex has degree 3 .
Theorem 5.12 If G is a cubic graph, then $\kappa(G)=\lambda(G)$.
9: Show that if G is a cubic graph with $\kappa(G)=1$ then $\lambda(G)=1$.

10: Show that if G is a cubic graph with $\kappa(G)=2$ then $\lambda(G)=2$.

11: Prove Theorem 5.12. (use previous questions)

12: Show that if G is a graph of order n and size $m \geq n-1$, then $\kappa(G) \leq\left\lfloor\frac{2 m}{n}\right\rfloor$.
Use Theorem 5.11 and compute average degree of G.
k th power G^{k} of a graph G is a graph where $V\left(G^{k}\right)=V(G)$ and $u v \in V\left(G^{k}\right)$ if $d_{G}(u, v) \leq k$.
G^{2} and G^{3} are called square and cube of G.
13: \quad Draw P_{5}^{2} and C_{9}^{2}.
We show that graph power can be computed by taking power of slightly modified adjacency matrix. It somehow justifies to call it a power.

14: Let A be the adjacency matrix of G. Let A^{\prime} be obtained from A by adding 1 to every diagonal entry. Show that $u v \in E\left(G^{k}\right)$ iff $A_{u, v}^{k} \neq 0$.

15: Show that if G is connected then G^{2} is 2 -connected.

Reading for next time - Chapter 5.4.
from G. Chartrand and P. Zhang. "A First Course in Graph Theory"

