Spring 2016, MATH-314 http://orion.math.iastate.edu/lidicky/314 Chapter 5.4 Menger's Theorem

Paths P_1 and P_2 are **internally disjoint** if their intersection contains only endpoints.

Theorem 5.16 (Menger's Theorem) Let u and v be nonadjacent vertices in a graph G. The minimum number of vertices in a u - v separating set equals the maximum number of internally disjoint u - v paths in G.

Proof. Let the minimum separating set be U. Use induction on |U| = k. Then use induction on the number of vertices and edges.

- **1:** Case 1: vertices u and v have a common neighbor $x \in U$.
- **2:** Case 2: There exists vertex in U not adjacent to u and a vertex not adjacent to v.

3: Case 3: Every U has all vertices adjacent to u and none to v or vice versa.

Theorem 5.17 A nontrivial graph G is k-connected for some integer $k \ge 2$ if and only if for each pair u, v of distinct vertices of G there are at least k internally disjoint u - v paths in G.

- 4: Prove theorem 5.17 for complete graphs.
- **5:** Show \leftarrow direction.
- 6: Show \Rightarrow direction if u and v are not adjacent.
- 7: Show \Rightarrow direction if u and v are adjacent.

8: Let G be a k-connected graph and let S be any set of k vertices. Show that if a graph H is obtained from G by adding a new vertex w and joining w to the vertices of S, then H is also k-connected.

9: Show that if G is a k-connected graph and u, v_1, v_2, \ldots, v_k are k+1 distinct vertices of G, then there exist internally disjoint $u - v_i$ paths $(1 \le i \le k)$ in G.

Theorem 5.20 If G is a k-connected graph, $k \ge 2$, then every k vertices of G lie on a common cycle of G.

We prove Theorem 5.20 by growing a cycle. Let $S = \{v_1, \ldots, v_k\}$. Since $k \ge 2$, there is a cycle containing v_1 and v_2 . Let C be a cycle containing vertices $\{v_1, \ldots, v_l\}$. We will use the previous question to extend the cycle.

10: Show that if C is a cycle of length l formed by vertices $\{v_1, \ldots, v_l\}$, then there exists a cycle containing vertices $\{v_1, \ldots, v_l, v_{l+1}\}$.

11: Show that if C is a cycle of length > l containing vertices $\{v_1, \ldots, v_l\}$, then there exists a cycle containing vertices $\{v_1, \ldots, v_l, v_{l+1}\}$.

12: 5.33 Let G be a 5-connected graph and let u, v and w be three distinct vertices of G. Prove that G contains two cycles C and C' that have only u and v in common but neither of which contains w.

Harary graph $H_{r,n}$ is a graph on n vertices v_1, \ldots, v_n that form a cycle C defined as follows. If r = 2k is event, then $H_{r,n} = C^k$ (recall that we take power of cycle). If r = 2k + 1 is odd and n = 2l is even, then $H_{r,n}$ is obtained from C^k by adding edges $v_i v_{i+l}$, where $1 \le i \le l$. If r = 2k + 1 is odd and n = 2l is odd, then $H_{r,n}$ is obtained from C^k by adding edges $v_i v_{i+l+1}$, where $1 \le i \le l$. If r = 2k + 1 is odd and n = 2l is odd, then $H_{r,n}$ is obtained from C^k by adding edges $v_i v_{i+l+1}$, where $1 \le i \le l$ and edge $v_1 v_{1+l}$.

13: Draw $H_{2,6}$, $H_{3,8}$, $H_{3,9}$.

14: Show that for any two integers r, n with $2 \le r < n$ holds $\kappa(H_{r,n}) = r$.

15: Open Prove or disprove that if G is a 3-connected graph, then no longest cycle in G is induced. Reading for next time - Chapter 5.4.

from G. Chartrand and P. Zhang. "A First Course in Graph Theory"