
Spring 2016, MATH-314 http://orion.math.iastate.edu/lidicky/314

Not in Textbook - Network Flows

Original application (product of cold war)

Suppose country X enters into a war. How quickly can X move tanks from storage s to the target t (battle
ground)? The tanks are moved on a railroad. Every link gives the capacity how many tank a day can be
transported.

s

u

30

v

20

w

30

t

20

20
40

1: How many tanks per day can be delivered to the battleground? Is the solution unique?

Solution: 50 tanks. Not unique.

Problem: (Directed) graph G, source s, sink t, capacities c : E(G)→ R+.
Network is (G, c, s, t).

Input: Network (G, c, s, t)
Output: s-t-flow of maximum value

s-t-flow f is a function f : E(G)→ R+

Value of f is
∑

su∈E f(su)−
∑

us∈E f(us) i.e. leaving − entering to s.

2: How f looks around one vertex of the network? (what must f satisfy?)

Solution: ∀e ∈ E(G) : f(e) ≤ c(e) and Flow conservation rule: For all v ∈ V \ {s, t}:∑
uv∈E

f(uv) =
∑
vu∈E

f(uv).

and for s, t it satisfies: ∑
su∈E

f(su)−
∑
us∈E

f(us) =
∑
ut∈E

f(ut)−
∑
tu∈E

f(tu).

3: How to improve these flows to be maximum? Description on edges are values of f, c.

s

u

2, 2

v

0, 3

w

0, 2

t

2, 2

0, 2
0, 3 s

u

2, 2

v

0, 3

w

0, 2

t

0, 3

2, 2
2, 2

Solution: Path s, v, w can be increased by 2. Path s, v, w, u, t can be increased by two.

4: After the improvement, how do you argue that nobody can further improve?

Solution: Consider set A = {s, v}. The capacity of edges going from A is 4. Hence no flow can route more
than 4 through the network.

MATH 314 - 13 - page 1/4

http://orion.math.iastate.edu/lidicky/314


Let A ⊂ V (G) such that s ∈ A and t 6∈ A. Use δ+(A) to denote set of edges uv, where u ∈ A and v 6∈ A (edges
leaving A). Use δ−(A) to denote set of edges uv, where u 6∈ A and v ∈ A (edges entering A).
Capacity of s-t-cut A is

∑
e∈δ+(A) c(e).

5: Prove that for A and any flow f holds
(a) value(f) =

∑
e∈δ+(A) f(e)−

∑
e∈δ−(A) f(e)

(b) value(f) ≤
∑

e∈δ+(A) c(e)

Solution: (a) Use conservation of flow at vertices in A.

value(f) =
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

=
∑
v∈A

 ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)


=

∑
e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)

(b) clearly
∑

e∈δ+(A) f(e)−
∑

e∈δ−(A) f(e) ≤
∑

e∈δ+(A) c(e) since f(e) ≤ c(e).

This proves the obvious observation that maximum flow cannot exceed capacity of minimum cut.

Notice in 3. we were improving flow be reducing the flow on uw. We “sent flow in the opposite direction”.

For a digraph G, define
←→
G by adding for every edge e also its reverse ←−e .

For f and c define residual capacities cf : E(
←→
G )→ R+

cf (e) = c(e)− f(e) cf (←−e ) = f(e)

Residual capacities . . . how much extra we can send in each direction.

Residual graph Gf is obtained from
←→
G by removing edges e ∈ E(

←→
G ) with cf (e) = 0.

Augmenting path is an s-t path in Gf .

6: Construct the residual graph for

s

u

2, 2

v

1, 3

w

1, 4

x
1, 2

t
1, 1

1, 2
2, 4

1, 2

and find an augmenting path and increase the flow using the augmenting path.

7: How to update (to augment the flow f using augmenting path in
←→
G ?

Solution: If flow is increasing on edge e by γ, then decrease cf (e) by γ and increase cf (←−e ) by γ.

MATH 314 - 13 - page 2/4



Ford-Fulkerson Algorithm
Input: Network (G, c, s, t).
Output: and s-t-flow f of maximum value

1. f(e) = 0 for all e ∈ E(G)

2. while f -augmenting path P exists:

3. compute γ := mine∈E(P ) cf (e)

4. augment f along P by γ (as much as possible)

8: How many iterations (at most) the algorithm needs at the following network:

s

u

N

v

N

t

N

1

N

(N is a big integer. Try to trick the algorithm to do many steps by picking P .)

Solution: Always use the edge uv with capacity 1. The augmentation will be always by one. So 2N iterations.
The running time depends on u.

9: Show that s-t-flow f is maximum if and only if there is no f -augmenting path. (That is, Ford-Fulkerson
algorithm is correct.)

Solution: If there is an augmenting path, then the flow can increase. If there is no augmenting path, then
from s reachable vertices in reduced graph from a cut. Recall

value(f) =
∑

e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e).

Since there is no augmenting path,∑
e∈δ−(A)

f(e) = 0
∑

e∈δ+(A)

f(e) =
∑

e∈δ+(A)

f(e).

This proves the maximality of the flow.

The question gives proof to
Theorem (Ford Fulkerson) Maximum value of an s-t-flow equals minimum capacity of an s-t-cut.

10: If c : E → Z, is it true that the flow produced from Ford-Fulekrson is integral and that the algorithm
finishes in a finite time?

Solution: Yes, the augmenting is always by an integer. Every augmentation raises the value of the flow by at
least one. This gives finiteness.

This proves
Theorem Dantzig Fulkerson: If the capacities are integral, then there exists an integral maximum flow.

11: If capacities are integral, is it true that every maximum flow is integral?

Solution: No - build network that has small cut and 2 paths to/or from it.

MATH 314 - 13 - page 3/4



Flows in graphs

Given a weighted directed graph (i.e., each directed edge has a value assigned which we think of as capacity
and denote by c) with one vertex identified as the sink (s) and a second vertex identified as the source (t), a
flow, denoted f , is an assignment of values to the edges satisfying:

1. The assignment of each edge is bounded above by the weight of each edge.

2. For each vertex other than the source and the sink, the sum of the assignments for the edges coming in
to a vertex is equal to the sum of the assignments of the edges coming out from that same vertex.

The total flow is equal to the net outflow from the source, or equivalently the net inflow to the sink. We can
bound the flow by looking at a set of edges which separates the source and the sink (i.e., so there is no directed
path from the source to the sink); the total sum of the edge weights of any such separating set is an upper
bound for the flow. In fact, more is true.

Max Flow-Min Cut. The maximum flow in a network equals the minimum capacity of a cut.

To find an optimal flow we look for an augmenting path. This is a path from the sink to the source such that
for forward edges we have that f(e) < c(e) (the current flow is less than the capacity of the edge, i.e., it is not
being fully utilized) and for backward edges we have f(e) > 0 (i.e., the edge is currently being used for flow).
Then by adding this path into the network we can increase the flow (the amount of flow that we can increase
by is the minimum for edges in the augmenting path of the difference c(e)− f(e) for forward edges and f(e) for
backward edges). If there is no augmenting path then the flow is maximal.

Algorithm (Ford-Fulkerson (1962)). Given a flow f in a network find either an augmenting path or a cut
showing that the flow is maximal. This is done by starting at the source and looking for all vertices which can
be reached by an augmenting path. Either we get to the sink and have some path that augments or we get stuck
in which case we have our desired cut.

Start with R = {s} (vertices we have reached) and S = ∅ (vertices we have searched).

Iteratively do the following:

• Pick a vertex v ∈ R− S.

• For each edge v → w with f(vw) < c(vw) and w /∈ R, add w to R.

• For each edge w → v with 0 < f(vw) and w /∈ R, add w to R.

• Add v to S.

• If t ∈ R then there is an augmenting path (this can be found by tracing how edges were added to S), and
we are done. If R = S, then S and S is our desired cut, and we are done. Otherwise, continue iterating.

We note in the special case that the capacities are all integral that the maximum flow can be taken as integral
on each edge. This is because in taking the augmenting paths we can always take an integral value when finding
the augmenting path.

By Steve Butler

MATH 314 - 13 - page 4/4


