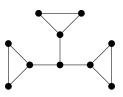
Spring 2016, MATH-314 http://orion.math.iastate.edu/lidicky/314 Chapter 8.2 - Factorization I

1-factor of a graph G is a spanning 1-regular subgraph (same as perfect matching)

k-factor of a graph G is a spanning k-regular subgraph

1: Decide if the following graph has a 1-factor



A (connected) component of a graph is **odd** or **even** according to its number of vertices. Denote the number of odd components of a graph G by $k_o(G)$.

2: Let G be a graph and $S \subseteq V(G)$. Show that if G has a 1-factor then for every $S \subseteq V(G)$ holds $k_o(G-S) \leq |S|$.

Theorem 8.10 (Tutte) A graph G contains a 1-factor iff $k_o(G-S) \leq |S|$ for every $S \subseteq V(G)$.

Proof. We only need to show \Leftarrow . We proceed by induction on the order n of graph G. Base case could be n = 1, n = 2. Now induction step.

3: Is it true that n is even? Is there a proper subset $S \subseteq V(G)$ such that $k_o(G-S) = |S|$? (that is, $S \neq \emptyset$)

Let S be the maximum size set such that $k_o(G-S) = |S| = k$. Let G_1, \ldots, G_l be components of G-S.

4: Show that all components G_1, \ldots, G_l are odd. That gives k = l.

Now our plan is to match one vertex from every G_i with S. We create an auxiliary bipartite graph H, where one part of the bipartition are vertices from S and in the other part there are k vertices where each vertex icorresponds to one G_i . Then H contains all edges is, where $s \in S$ has a neighbor in G_i . We want to find a perfect matching in H.

5: Show that H satisfies Hall's condition for the side corresponding to graphs G_i s.

Let M be a perfect matching in H. The perfect matching M corresponds to a matching M_S , where every vertex $s \in S$ is matched to some vertex v_i in G_i .

Now in order to finish the perfect matching in G, we need to match vertices in $G_i - v_i$ to each other. We try to use induction on $G_i - v_i$.

Let $W \subseteq G_i - v_i$. Since $G_i - v_i$ has even order, both W and $k_o(G_i - v_i - W)$ have the same parity.

from G. Chartrand and P. Zhang. "A First Course in Graph Theory"

6: Show that $k_o(G_i - v_i - W) \le |W|$ to verify the induction hypothesis. (Hint: try combine W with S).

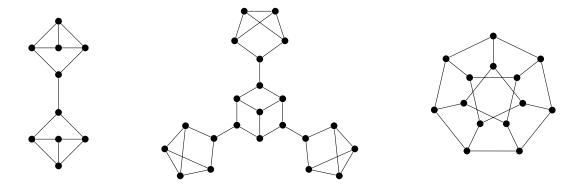
7: Let G be a bridgeless 3-regular graph. Let $S \subseteq V(G)$ and let H be an odd component of G - S. Is it possible that there are at most two edges uv, where $u \in S$ and $v \in V(H)$?

Theorem 8.11(Petersen's Theorem) Every 3-regular bridgeless graph contains a 1-factor.

8: Prove Theorem 8.11 by verifying Tutte's condition from Theorem 8.10.

A graph G is **1-factorable** if its edges can be decomposed into 1-factors. Decomposition of K_4 into three 1-factors:

9: Determine which of the cubic graphs has a 1-factor and which is 1-factorable.



10: Find a cubic bridgeless graph G and two edges e and f that do not share any vertex such that there is no perfect matching M in G where $e \notin M$ and $f \notin M$.

11: Is Peterson's graph 1-factorable?

12: Let G be a bridgeless cubic graph. Let e be any edge of G. Show that there exists a perfect matching M in G such that $e \notin G$.

13: Let G be a bridgeless cubic graph. Let e be any edge of G. Show that there exists a perfect matching M in G such that $e \in G$.

from G. Chartrand and P. Zhang. "A First Course in Graph Theory"

MATH 314 - 18 - page 2/2