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Chapter 9.1 - Planar Graphs

Informally, drawing of a graph G in the plane is assignment of distinct points to the vertices and curves to edges
such that curves have as endpoints their vertices and curves intersect only at endpoints.

A graph G is planar if it is possible to draw it in the plane (without crossings of edges).

A graph G is plane if it is drawn in the plane (without crossings of edges).

1: Is the following graph K3,3 planar? If K4 planar? Is K5 planar?

Face (in textbook called region) in a plane graph G is a region of the plane that is obtained by removing
the edges (and vertices) from the plane. (Imagine drawing G on a paper and cutting along the edges. The
connected pieces of the paper after the cuttings is done are called faces.)

The unbounded piece is called outer/exterior face/region.

Theorem If G is a planar graph, then it has a drawing where all edges correspond to straight line segments.

Theorem 9.1 - Euler Identity Let G be a connected plane graph with v ≥ 1 vertices, e edges and f faces.
Then

v + f = e + 2.

2: Prove Euler Identity. Use induction and that every graph can be created from one vertex by adding leaves
and edges.

Solution: If G has one vertex, zero edges and one face, the identity holds. If G has a cycle C, then removing
one edge from the cycle decreases the number of edges by one and number of faces by one. If G has a vertex of
degree one, then removing the vertex and its incident edge decreases the number of edges by one and number
of vertices by one. Notice that both cases change both sides of the equation by one.

3: Let G be a plane graph with f faces and e edges, where e ≥ 2. Show that 3f ≤ 2e. Hint: Counting (edge
side)-face incidences.

Solution: Let x be the number of (edge side)-face incidencies. This way, every edge is incident with two faces
(or one face twice if it is a bridge) and we get 2e = x. On the other hand, the smallest face is a triangle, hence
3f ≤ x. This gives 3f ≤ 2e.

Theorem 9.2 If G is a planar graph of order at least 3, then

|E(G)| ≤ 3|V (G)| − 6.

4: Prove Theorem 9.2.

Solution: If |E(G)| ≤ 3, the inequality holds. We use the Euler Identity v + f = e + 2 and combine it with
3f ≤ 2e. That gives 3v + 3f = 3e + 6 and 2e + 3v ≥ 3e + 6, which is the same as e ≤ 3v − 6.

5: Show that K5 is not a planar graph.

Solution: K5 has 10 edges and 5 vertices. So it does not satisfy that 10 ≤ 3 · 5− 6.

6: Show that every planar graph has a vertex of degree at most 5.

Solution: Suppose for contradiction that G has a minimum degree 6. Then 2|E(G)| =
∑

v∈V (G) deg v ≥
6|V (G)|, which contradicts that |E(G)| ≤ 3|V (G)| − 6.
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7: Show that if G is a bipartite planar graph with at least one two edges then

|E(G)| ≤ 2|V (G)| − 4

Solution: Let G be a bipartite plane graph with f faces, v vertices and e edges,

If G is bipartite and not trivial, then the smallest face has at least 4 edges. Hence 4f ≤ 2e.

We use the Euler Identity v + f = e + 2 and combine it with 4f ≤ 2e. That gives 2v + 2f = 2e + 4 and
e + 2v ≥ 2e + 4, which is the same as e ≤ 2v − 4.

8: Show that K3,3 is not a planar graph.

Solution: K3,3 has 9 edges and 6 vertices. Hence it does not satisfy e ≤ 2v − 4.

9: Are the following graphs planar?

Solution: No

Theorem 9.7 - Kuratowski A graph G is planar iff it does not contain a subdivision of K5 or K3,3.

Let G be a graph. A graph H is a minor of G if H can be obtained from G by deleting vertices, deleting edges
and contracting edges.

Theorem A graph G is planar iff it does not contain K5 or K3,3 as a minor.

10: Show that Petersen’s graph has K5 as a minor.

11: Show that Petersen’s graph has K3,3 as a minor.

12: Are the following graphs planar?

13: Is it true that every bipartite planar graph has a vertex of degree three or less?

A graph G is maximal planar if G is planar but addition of any edge makes G not planar.

14: Show that all faces of maximal planar graph are triangles.

15: Let G be maximal planar graph of order 100 embedded in the plane. How many faces does it have?

Crossing number of the graph is the minimum number of crossings of edges in a drawing of a graph in the
plane. Note planar graphs have crossing number 0.

16: Show that crossing number of K6 is 3.

17: Open Prove that every planar graph of order n contains an independent set of size at least n/4. (Without
using 4-color theorem. Best know is 3n

13 .)

18: Open Find a formula for a crossing number of Kn or Kn,n.
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Planar graphs and Euler’s formula

A graph is planar if we can draw it on the plane so that no two edges cross one another. (Note that we might
have a drawing of the graph where the edges do cross; the point is there is some drawing where they do not
cross.) Many simple graphs we have dealt with are planar, but we have also encountered many nonplanar
graphs and in some sense most graphs are nonplanar. Examples of nonplanar graphs include K5 and K3,3 (we
haven’t shown they are nonplanar, but will soon).

Note that drawing a graph on the plane is equivalent to drawing the graph on a sphere indeed we can wrap the
plane around the sphere, or more mathematically speaking we can project the plane to the sphere only missing
a single point which we can easily touch up. Of course we can draw graphs on other surfaces and they have
different behavior. For example, we can easily draw K5 on a torus.

Given a planar graph there are the vertices and edges as before, but now we also have faces (i.e., imagine that
we take the planar graph and cut along the vertices and edges, that cuts the plane into several pieces, and each
piece is called a face; note that there is one huge face on the outside, called the unbounded face). A face is
bounded by a set of edges and so the length of the face is how many edges are used to make up that face. Often
times faces are grouped by how many edges make up the faces (note that if we are dealing with simple graphs
that it takes at least three edges to make a face; a loop would only take one edge to make a face, and two edges
joining the same pair of vertices only take two edges to make a face). If we let fi denote the number of faces
with i edges then in a simple graph we have the following:

f3 + f4 + f5 + · · · = |F | and 3f3 + 4f4 + 5f5 + · · · = 2|E|.

The first reflects the count of the number of faces and the second follows by noting that each edge will get used
in exactly two faces.

Given a drawing of a planar graph we can construct its dual graph. This is done by putting a vertex in each
face and then connecting two of these new vertices if the corresponding faces share an edge.

The most useful result for planar graphs is the following result.

Euler’s Formula. For a connected planar graph G we have |V | − |E|+ |F | = 2.

This has many proofs, here is a sketch of one. It is true for the graph K1 (|V | = |F | = 1). Further, given it is
true for a graph it is true if we add an edge between two existing vertices (increases |E| and |F | both by 1) or
if we add a new vertex and an edge connecting that vertex to the graph (increases |V | and |E| both by 1). But
any connected planar graph can be constructed by starting with K1 and doing those steps, therefore the result
is true.

Theorem. For a simple planar graph |E| ≤ 3|V | − 6.

Proof. From the above we have

2|E| = 3f3 + 4f4 + 5f5 + · · · ≥ 3f3 + 3f4 + 3f5 + · · · = 3(f3 + f4 + f5 + · · · ) = 3|F |.

Then by Euler’s formula we have

2 = |V | − |E|+ |F | ≤ |V | − |E|+ 2
3 |E| so 1

3 |E| ≤ |V | − 2 or |E| ≤ 3|V | − 6.

From this we can immediately conclude that K5 (|V | = 5 and |E| = 10) is not planar. A similar argument
shows that K3,3 is not planar. (I told you we would do this soon!)
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More on planar graphs

Last time we discussed planar graphs (i.e., graphs which can be drawn in the plane (or sphere) so that no lines
cross); these graphs have a new feature, faces. One of the most useful formulas that we have for working with
connected planar graphs is Euler’s formula: |V | − |E|+ F |F = 2.

From this we can immediately arrive some simple consequences for (connected) planar graphs:

• |E| ≤ 3|V | − 6 and equality holds only if all faces are triangles.

• There is a vertex of degree ≤ 5.

• K5 and K3,3 are not planar.

Along with some other results (see homework for examples).

One question we have is when is a graph planar. From the above we see that if we have K5 or K3,3 as a
subgraph we cannot be planar (i.e., every subgraph of a planar graph is planar). But more generally if we have
a subgraph which has the same “structure” of K5 or K3,3 we cannot be planar. More precisely, we say that H
is a minor of G if we can get from G to H by deleting and/or contracting edges. Note in particular if a graph
has a K3,3 or K5 minor then it cannot be planar. It turns out this is sufficient.

Theorem (Kuratowski (1930)). A graph is planar if and only if it has no K5 or K3,3 minor.

Given a graph the crossing number, cr(G), is the minimum number of times that edges cross in some drawing
of the graph on the plane. A graph is planar if and only if cr(G) = 0, on the other hand we have cr(K5) = 1
and cr(K3,3) = 1 and so these are non-planar. This idea was investigated by Turan who thought about this
problem while in a World War II forced labor camp; he had to move bricks around and noticed that the most
difficult part of the process was where two paths intersected and so considered the problem of minimizing the
number of intersections of these paths. There are some easy bounds.

Theorem. cr(G) ≥ |E| − 3|V |+ 6.

Proof. Find a drawing with the least crossings and make it a planar graph by replacing each crossing with a
vertex. This adds cr(G) vertices and 2cr(G) edges. Since |E| ≤ 3|V | − 6 for any planar graph we can conclude
for our original graph that |E|+ 2cr(G) ≤ 3(|V |+ cr(G))− 6 and the result follows by rearranging.

By using more sophisticated techniques (i.e., ask a MATH 492 student at the end of the semester) it can be

shown that cr(G) ≥ 1
64

|E|3
|V |2 . In general this leads to hard problems which are still open.

Conjecture. cr(Km,n) =

⌊
m

2

⌋⌊
m− 1

2

⌋⌊
n

2

⌋⌊
n− 1

2

⌋
.

It’s known “≤” holds and also is true if min{m,n} ≤ 6, but that still leaves a lot to show!
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