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Chapter 10.2 - Graphs Coloring

Problem: Color regions of the plane such that regions sharing border get different colors. Show that 4 colors is
enough (if regions connected) for any set of regions. (Restating: Is it true that every planar graph is 4-colorable?
Answer is yes.)

The problem can be turned into a graph problem by having a vertex for every region.

Let G be a graph and C be a set of colors. Coloring is a mapping c : V (G)→ C such that c(u) 6= c(v) for all
uv ∈ E(G). Sometimes called proper coloring.

A graph G is k-colorable is there exists a (proper) coloring of G using k colors.

Chromatic number of G, denoted by χ(G) is the minimum k such that G is k-colorable.

1: Decide what is the chromatic number of Ck. (try 3 ≤ k ≤ 7)

Solution: χ(C4) = χ(C6) = 2 and χ(C3) = χ(C5) = χ(C7) = 3.
For all even cycles, χ(C2k = 2 and for odd cycles χ(C2k+1) = 3.

Let c be a (proper) coloring of G. If Vred is the set of vertices colored red then Vred is an independent set.

Coloring G by k colors is a decomposition of V (G) into in k independent sets. V (G) = V1 ∪ V2 ∪ · · · ∪ Vk.

2: Show that χ(G) = 2 iff G is bipartite (and has at least one edge).

Solution: If G is 2-colorable, then each of the two color classes is an independent set and it creates the desired
bipartition. If G is bipartite, color one class with color one and the other with color two. That creates the
desired coloring.
Notice that G is bipartite iff it does not contain an odd cycle as a subgraph. Hence we get a characterization
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that G is 2-colorable iff G does not contain an odd cycle as a subgraph. No nice characterization is known for
more than 2 colors.

3: What is χ(Kn)?

Solution: n since everyone is connected with everyone. This gives an easy lower bound.

A clique in a graph G is a subgraph that is isomorphic to a complete graph.
The clique number, ω(G), is the order of the largest clique in G.

Recall ∆(G) is the maximum degree of a vertex in G.

4: Show that for every graph G holds ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Solution: Vertices in a clique has to be colored by different colors. Hence ω(G) ≤ χ(G). For the other bound,
color the vertices one by one. Everytime you are about to color a vertex, it has at most ∆(G) neighbors that
are already colored. So it needs to avoid at most ∆(G) colors, but there are ∆(G) + 1 colors available.

Theorem 10.8 Brook’s theorem. Let G be a connected graph, that is not a complete graph or an odd cycle.
Then χ(G) ≤ ∆(G).

Notice that Brook’s theorem tells us that χ(G) ≤ ∆(G) + 1 holds with equality iff G is a complete graph or an
odd cycle.

Let’s prove Brook’s theorem. Let G be a connected graph that is not complete or an odd cycle. Also assume
that we have proved the theorem for all smaller graphs (we are proving by induction on the number of vertices).
Let ∆(G) = ∆.

5: Solve the case that ∆ = 2

Solution: If ∆ = 2, then G is a cycle or a path and checking the Brook’s claim is straightforward.

So we assume ∆ ≥ 3.

6: Show that G is 2-connected. (use induction)

Solution: If G not 2-connected, one can color all blocks of G separately with ∆ colors and combine them by
permuting colors. Recall that block is a maximal 2-connected subgraph.

7: Prove the case where G has a vertex v of degree less than ∆ (greedy coloring)

Solution: Take any spanning tree T of G. Orient all edges of T towards v. Now order the vertices of G such
that if xy is an edge of T oriented in this direction. Hence v is last in the ordering and every vertex has at least
one neighbor behind in the ordering. Now try to color vertices according to this ordering. Every vertex has to
avoid color of at most ∆− 1 other vertices, that are in the ordering before. So ∆ colors is enough.

Now we assume G is ∆-regular. We still want to use greedy coloring, but guarantee that the last vertex has 2
neighbors with the same color.

8: Assume that there is a vertex v such that G− v is 2-connected. Prove Brook’s Theorem.

Solution: Take v and any vertex y in distance 2 from it (why exists?). They have a common neighbor z.
Since G − v is 2-connected, G − v − y is connected. Hence there is an orientation of edges of G − v − y that
all go towards z. So we there is an ordering of G− v − y where z is last and all vertices but z have a neighbor
behind in the ordering. Now we create the final ordering by putting the vertices v and y first. Notice that in
a coloring, v and y get the same color since they come first and they are not adjacent. So z has ∆ neighbors
that are already colored when coloring z, but two of them have the same color. Hence ∆ colors is enough.

9: Assume that there is a vertex v such that G− v is not 2-connected. Prove Brook’s Theorem. Notice that
G− v is still connected. Consider block decomposition of G− v and see where are neighbors of v.
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Solution: Since G is 2-connected, v has to have neighbors in the end -blocks. Take neighbors x and y of v in
two different end-blocks. Notice that G − x − y is still connected. Create an ordering where x and y are first
and v is last.

Question: Do you need a large clique for a large chromatic number?

10: What is the chromatic number of the Grötzsch’s graph? Notice it is triangle-free.

Solution: It is 4. There is a coloring with 4 colors. For showing that 3 is not enough, try to do a 3-coloring.
First color the outer 5-cycle. Then vertices in the inner 5-cycle must still contain all three colors. This kills the
last color for the middle vertex.

Theorem (Erdős) For every k, l there exists a graph of girth l and chromatic number k.

The proof is probabilistic and we skip it.

Mycielski construction is a construction to create a triangle free graph of arbitrary chromatic number.

Start with a graph G, duplicate every vertex and connect new vertex to the duplicates.

11: Apply the Mycielski operation on C5.

Solution:

C5 C5 duplicated vertrices The whole thing

12: Show that the Mycielski construction is increasing the chromatic number.

Solution: Suppose the original graph G that went into the construction has χ(G) = k. If we k-color it, for
every color there is a vertex c such that its neighbors have all remaining k − 1 colors. Hence the duplicate of v
must have the color of v. The last vertex added will have neighbors of all k colors. Hence the graph that came
from the construction is not k-colorable and at least one extra color is needed.
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13: Determine χ(G) where G is the Petersen graph.

14: Show that χ(G)α(G) ≥ |V | (recall α(G) is the independent number). IMPORTANT!

15: Show that χ(G+H) = χ(G)+χ(H) (recall G+H is the join of G and H, between G and H is a complete
bipartite graph).

16: Show that χ(G�H) ≥ max{χ(G), χ(H)} (recall G�H is the Cartesian product of G and H).

17: Show that every planar graph is 6-colorable.

18: Show that every outer-planar graph is 3-colorable.

A graph G is k-critical if χ(G) = k but χ(H) < k for every proper subgraph H of G. One can think that G is
minimal graph with χ(G) = k.

19: Show that the set of all 3-critical graphs is equal to the set of all odd cycles.

20: Prove that Brooks’ Theorem for ∆ ≥ 3 is equivalent to the following statement: If G = (V,E) is k-critical
for k ≥ 4 and G is not complete, then |E| ≥ (|V |(k − 1) + 1)/2.

21: Open Reed’s conjecture: χ(G) ≤ d(ω(G) + ∆(G) + 1)/2e
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