
MATH-566 HW 5

Due Oct 5 before class. Just bring it before the class and it will be collected there.

1: (Analytic center)
Let S be defined as intersection of halfspaces xi ≥ 0 and (1 − xi)

k ≥ 0. Suppose i ∈
{1, 2, . . . , d} and k ≥ 1 is odd. Compute the analytic center of S. Notice that for x satisfying
(1− xi)

k ≥ 0, the function (1− xi)
k is convex.

2: (Central path)
Compute central path for the following problem

(P )



minimize −x1

subject to x1 ≤ 1

x2 ≤ 1

x1 ≥ 0

x2 ≥ 0

and find the optimal solution using the central path. Plot (sketch) the set of feasible solutions
and the computed central path. Lot of calculus...
Hint: The central path is formed by points that are optimal solutions to

min ht(x1, x2) = −tx1 + Φ(x1, x2),

where t ≥ 0 and Φ(x1, x2) is the barrier function. Take partial derivatives of ht(x1, x2) to
obtain optimal solution (x1, x2)t. For t ∈ [0,∞] these points of optimal solutions will form a
curve. Plot or describe the curve. This curve is the central path.

3: (Alternative attempt to define minimum spanning tree as LP)
Let G = (V,E) and |V | = n.

Recall that the spanning tree polytope was created by constraints tree has n − 1 edges
and tree has no cycles. Formally,

STP =

{
x ∈ [0, 1]E(G) :

∑
e∈E

xe = n− 1,
∑

uv∈E,u∈X,v∈X

x(u,v) ≤ |X| − 1 for ∅ ⊂ X ⊂ V

}
.

Suppose we try to characterize the spanning tree by assuming that by constraints tree
has n − 1 edges and tree is connected. The tree is connected can be formulated by saying
that for every cut, the sum xe of edges e in the cut is at least one. Formally,

P =

{
x ∈ [0, 1]E(G) :

∑
e∈E

xe = n− 1,
∑

uv∈E,u∈X,v 6∈X

x(u,v) ≥ 1 for ∅ ⊂ X ⊂ V

}
.

1. Prove that the spanning tree polytope is a subset of P . That is, STP ⊆ P .
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2. Show P does NOT have to be the same as the spanning tree polytope. To do this,
show that the polytope P does NOT have to be integral (i.e., P contains a vertex that
does not have all coordinates integers).

Hint: See the book Combinatorial Optimization from Korte and Vygen on the bottom of
the page 150. Free PDF available from ISU library.

4: (Programming spanning tree)
Implement any minimum spanning tree algorithm and test it on random data. You can
pick any algorithm you like. You can use ANY programming language but you have to
IMPLEMENT the method yourself (calling a library function RunKruskal is not acceptable).
Obtain data by randomly generating 10 points in range [0, 10]2 and the cost of every edge is
the Euclidean distance in R2. We consider all 45 edges of K10. Finally, create the plot of of
the random points and draw edges picked to the spanning tree. You should provide: Name
of the algorithm you implemented and short description of implementation, printout of the
source code, pictures of two solutions.
Template is provided for Sage, you do not have to use it.
Time complexity DOES NOT matter.

# MATH 566 - Minimum spanning tree algorithm

# Notes:

# - pick any algorithm for minimum spanning three you like

# - no need to optimize the running time

#

# This plots vertices as red dots and blue edges connecting them

def plot_vertices_edges(vertices, edges):

drawing = line([])

for x in vertices:

drawing = drawing + disk(x, 0.1, (0,2*pi), color=’red’)

for e in edges:

drawing = drawing + line([vertices[e[0]], vertices[e[1]]])

drawing.show()

# Generate 10 random vertices in 10x10 grid

def generate_random_vertices():

vertices=[]

for i in range(10):

vertices.append((random()*10, random()*10))

return vertices

# This is the function that you need to write

def compute_minimum_spannig_tree(vertices):

n = len(vertices)

edges_in_tree = [[0,1],[1,2],[5,6]]
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edges_in_tree = []

vertex_components = range(n)

# Write your code here please....

return edges_in_tree

vertices = generate_random_vertices()

edges = compute_minimum_spannig_tree(vertices)

plot_vertices_edges(vertices, edges)
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