
MATH-566 HW 10

Due Dec 9 before class (regularly). Just bring it before the class and it will be collected
there.

Complete 5 questions.

1: (Branch and bound)
Solve the following problem using branch and bound. Draw the branching tree too.

(P ) =



maximize −x1 + 4x2

subject to −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

xi ≥ 0, xi ∈ Z for i ∈ {1, 2}

You can use any linear programming solver for solving the relaxations.

2: (Cutting planes)
Let P be a convex hull of (0, 0), (0, 1), (k, 1

2
). Give an upper bound on Chvátal’s rank of P .

(Show it is at most 2k, actually, it is exactly 2k.)
Hints: Write P as an intersection of half-spaces, use induction on k. See what we were
doing in notes.
Drawing of P for k = 3.

(0,0)

1

3

(3, 1
2
)P

(0,0)

1

3

(3, 1
2
)P

(0,0)

1

3

(3, 1
2
)P

(0,0)

1

3

(3, 1
2
)P

x1

x2

3: (Can you do Edmonds? )
Run Edmond’s Blossom algorithm on the following graph. Notice that somebody already
found a partial matching. What is the largest possible matching? Try to start growing
augmenting tree from x, use BFS algorithm for building the tree.

x

1



4: (Can you do weighted bipartite matching? )
Find minimum-weight perfect matching in the following graph:

x

1

4

4

2

4

5

4

6
3

A) By using algorithm from class that grows augmenting tree (and keep primal/dual solu-
tions). Start growing x.
B) Formulate the problem using Integer/Linear programming and solve it with your favorite
solver.

5: (Understanding maximum matching)
Slither is a two-person game played on a graph G = (V,E). The players, called First and
Second, play alternatively, with First playing first. At each step the player whose turn it is
chooses a previously unchosen edge. The only rule is that at every step the set of chosen
edges forms a path. The loser is the first player unable to make a legal move at his or her
turn. Prove that if G has a perfect matching, then First can force a win.

6: (Programming A)
Implement algorithm for finding maximum matching in bipartite graphs. Test it on the
3D-cube.

7: (Programming B)
Implement algorithm for finding maximum matching in any graph.
Test it on the 3D-cube and the graph from question 3.
(Doing this will also solve the previous question - 2 for 1.)

2


