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Lecture 1 - Proper Coloring
Let G be a graph and C be a set of colors. A (proper) coloring is a mappin@ V(G) — C such that for every
wv € E(G) holds p(u) # p(v). 2
‘ ‘/,——"'
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e If |C| =k, then G is k-colorable.

* Smallest k such that G is k-colorable is called the chromatic number, denoted by x(G).
o If x(G) =k, then we say G is a k-chromatic.

e In a coloring ¢, vertices colored with the same color are color class.

1: Determine the chromatic number of the following graph.

2: Show that 2.

e Graph is 1-colorable if and only if it is edgeless. \/
e Graph is 2-colorable if and only if it is bipartite.

Note: A k-coloring of G = (V, E) is a decomposition V' as V3 U--- UV} into independent sets.

Deciding 3-colorability is an NP-complete problem. That means no efficient algorithm. Thus giving upper and
lower bound of chromatic number for various classes of graphs is valuable.

3: Show these basic bounds for chromatic number.
LY
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(a) x(G) < n. > sy 3 e

-~

(b) If H is a subgraph of G, then x(H) < x(G). In particular,‘w(G))g x(G).
(€) x(G) 2 n/a(G).
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1 Bounds by A

4: Show that for any graph G,
o1 X(G) < A(G) +1. (1)
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If we have a vertex aller than A, the we can slightly improve the above bound. e
( A CormpgL)
5: Show that if grap contaims a vertex v of degree d(v) < A(G). Then
x(G) < A(G). ' (2)

.
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Notice that in (1), we have equality for odd cycles and complete graphs. The classical theorem of Brooks assures
that these is no other such graph.

Theorem 1 (Brooks). If G is not an odd cycle nor complete graph, then
x(G) £ A(G).

Proof. Let A = A(G). The claim obviously holds for A < 2, so assume in what follows that A > 3.

6: Finish the proof if G fib a cw—_&\ﬁ ! ) & A ((,.)
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Suppose now G has a 2-cut {u, v} such that u and v are not adjacent. Define G and Go, whose union is G and
intersection is comprised of vertices u and v. Note that these vertices are of degree < A-—1.

7: Assume that for each G; and G exists x; € {u,v} such that dg,(z) <A -2

@ & @ 1@""‘@*’%m

8: So we may assume that in one of these graphs say G1, vertlces U and v are of degree prec1se1y A 1. Rinish

the proof. ‘ (' X,
< VSe.
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Finally, as the is not complete we have a vertex v

arguments assure that G — z — y is connected.

on-adjacent vertices x and y. Above

9: Finish the proof by cleverly ordering the vertices and using greedy coloring.

VEE A Colors

;cpx/\}f( g Q"/A @§m

1.1 Two conjectures -

Most trivial bounds are w(G) < x(G) and x(G) < A(G) + 1. \)"DD Cieve CHe e
Conjecture 2 (Reed). For every graph G, it holds I—:Z— - % "\\ — Z -
- [W(G) +A(G) + 11 ¥ '
5 !

x(G) < k( C{)

To support his conjecture, Reed proved that there exists € > 0 such that for every graph G,

X(G) L ew(G) + (1 —€)(A(G) +1). i ’_’(__
Z

A significant improvement to £ = % was obtained by Delcourt and Postle.

{ (z
10: Prove the conjecture for x(G) = A(G) +1 \‘s W + s (bc“) "'()

Usg¢ Lruax M => k) = AN+

In case of x(G) = A(G), the conjecture claims that w(G) € [A(G) — 2,A(G)]. This is still open, but for large
A(G), Reed proved that w(G) = A(G). The next conjecture of Borodin and Kostochka claims that this holds
whenever A(G) > 9. And, it is known for each smaller A(G) that it does not hold.

Conjecture 3 (Borodin and Kostochka). Let G be a graph with x(G) = A(G) = 9. Then,
w(G) = A(G) .

A weakening by Cranston and Rabern is that that if x(G) = A(G) > 13, then w(G) > A(G) - 3.
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1.2 Triangle-free graphs with large chromatic number

Let G be a graph with V(G) = {1,22,...,2n}. Mycielski graph M(G) for G is the graph defined in the
following way:

e V(M(G)) = (G) U {y},yg,  sws Pup {2} and
o E(M(G)) = E(G) U{yizj; viz; € E(G)} U{zy1, 212, ..., 2yn}

11: Find M(K3) and M(C5).
LY] f'b(
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The following property is obvious.

Observation 4. If G is traingle-free, then M(G) is triangle-free.

Proposition 5. For every émph G, it holds
X(M(G)) = x(G) +1.

12: Prove the proposition. First find (x(G) + 1)-coloring of M(G). Then assume M(G) has x(G)-coloring

and find a contradiction.
CZ,.. e}

&l .. k1 < (L) —CswiLiAL
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Theorem 6. For every k, there is a triangle-free k-chromatic number.

13: Prove the proposition.

MMM (M (] Le)))))
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1.3 Degenericity
z‘ Broers

A greedy coloring of a graph G is a colormg of vertices one%ﬂ'ﬂ?&me or s using the smallest
available color from colors 1,2, 3,.

14: Show that there exists an ordering of vertices of G, such that greedy coloring uses only x(G) colors.

S 2D e e
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One ordering that is considered to be “good” (although does not always arise an optimal coloring) and that
can be easily constructed is related with the graph degenericity. AR SMen
Degenericity d(G) of a graf G is P

Fo =

’wﬂ'_. d(G) = }ngxé(H)

! t'. : o . S

'Y fe. maximum of the minimum degrees of its subgraphs. And, if d(G\.< k, then we say that the graph G is
k-deges ted. :

egenerate R d( 4’;) ka(C»-)
Proposition 7. If G is k-degenerated, then we can order its vertices vi,va, ..., v, such that each vertex v; has
at most k neighbors with smaller indez (i.e. among vy,va,...,v;_1).
%

15: Prove the proposition. ;
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Now, the greedy coloring applied on the ordering from the proposition above gives the follow@ result.

ooy

Proposition 8. Every k-degenerated graph is (k + 1)-colorable.

Because of this, the value d(G) + 1 is known as the coloring number of a graph G, and it is denoted by col(G).
Thus, x(G) < col(G). Notice that it is easy to calculate col(G) unlike x(G). Another classical result is the
Nordhaus-Gaddum Theorem. We will use degenericty in its proof.

Theorem 9 (Nordhaus and Gaddum). For a graph G on n wvertices, and its complement G, the following
statements hold:

<
(@) [2vA] £ X(G) + X(G) S n+1; =
) n X0 x(O) < L(%5)°). aenll 2

—
Proof. Suppose that ¢ and ¢ are optimal colorings of G and G. By assigning the pair (c¢(u), ¢(u)) to every vertex

u, we obtain a proper coloring of K.

16: Show this coloring is proving one if the inequalities.
b i

L=l ¢ x(e). %(2)
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Deagremey

L
17: Suppose that d(G) = k. Show that d(G) <n—k — 1.
Hint: One option is to suppose otherwise for contradiction and count the number of vertices.

Fo Cory o cov
e AH4C st (M) > nx ﬂ
. 3 Fee = a(F) 2k

e 2 MR 14 IV(R) | =

T Kl =g A Y 4y ey
\Vc\\ = w

18: Finish the proof of the theorem.

T 1elw) « Q) £ R(G) 4 WQ(C-) & Kal 4 w-Kel-1 =

-

= N+l

O

Finale notes. For the end, let us mention, another interesting strengthening of the inequality (1) is the
following theorem of Hajnal and Szemerédi from 1970.

Theorem 10 (Hajnal and Szemerédi). A graph G can be colored with A(G)+1 colors such that all color classes

are of equal or almost equal size.

This theorem initiated the study of so called equitable colorings that require color classes to be of almost same
size. The proof of this theorem is not simple enough to be considered here.

It is naturally to consider a Brook’s-type theorem for triangle free graphs, i.e. finding as good as possible upper
bound of y in term of A for triangle free graphs. One can go even more general asking about K;-free graphs.
Interested reader can find more about this topic in the book of Jensen and Toft.

AAAA L. Dinin Necalencenlsi and Ravnard TidislvG
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Lecture 2 - Critical Graphs

A graph G is k-critical if x(G) = k but every proper subgraph of G is (k — 1)-colorable.
Note: Sometimes there are critical graphs also for other properties.

1: Are the depicted graph critical for some k?
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2: Show that every k-chromatic contains a subgraph that is k-critical.

-

o

2/~

3: Characterize all 2-critical and 3-critical graphs.

/@ Q ' o
v, 3 s qr
No good characterization of k-critical for k¥ > 4 is known. Knowing the k-critical graphs helps a lot with

deciding if a graph is (k — 1)-colorable. For particular classes of graphs, it is worth it to be able to enumerate
k-critical graphs if possible.

We will see below, that a critical graph has minimum degree k£ — 1. Here is an interesting special case.

4: Show that if all vertices of a k-critical graph are of degree k — 1, then the graph is K}, or £ = 3 and it is
an odd cycle. _
Hint: Recall previous lectire.

AR =1 fdgll, ot U=y 2 Qs Cuﬂ
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Observation 1. The following hold:

(a) The minimum degree of a k-critical graphs is > k — 1.
(b) Ky is the smallest k-critical graph.
(¢) There is no k-critical graph on k + 1 vertices.

(d) No k-critical graph has a clique-cut. In particular, for k > 3, they are 2-connected. <

5: Prove Observation 1. Recall that a clique-cut in a graph G is a subset of vertices C, such that G[C] is a
cliqgue and G — C' is not connected.

e~z '

9'7 &@* - AR

1 . .

W,

V)

Regarding the last observation, the 2-conmectivity cannot be increased as we will see%oon that there exist
critical graphs of connectivity two, and Dirac characterized them. Next we state his result but leave its proof
for an exercise to the reader.

Let G be a graph of vertex-connectivity 2, and {u,v} its 2-cut, and fix some integer k. A {u,v}-component of G
is a subgraph H induced by the vertices of a component C' of G —u — v union {u, v}, ie. H=G[V(C)U{u,v}].
A {u,v}-component Gy of G is of type 1 if it is (k — 1)-colorable and every (k — 1)-coloring assigns a same color
to u and v, and a {u,v}-component Gz of G is of type 2 if it is (k — 1)-colorable and every (k — 1)-coloring
assigns distinct colors to u and v.
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6: Determine which components are of which type for « and v.
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Theorem 2 (Dirac). Let G be a graph and {u, v} its 2-vertez-cut, e = uv a new edge. Prove that G is k-critical
if and only there are two {u,v}-components G1 and Gy such that G = G1UGa, each G; is of type i, and G1+e
and Ga/e are k-critical. » Q. x

. . G ¢ ' - 67.
Proof will be as an in-home exer(nse.—r\m p
~—
e, (7_

o T
Edge-connectivity turned to be high for critical graphs, as :ﬁo%'vn by Dirac [?]. ol

Theorem 3 (Dirac). For k > 2, every k-critical graph is (k — 1)-edge-connected. (E
k-

Proof. Suppose that G is a k-critical graph and E = [U;,Us] is an edge-cut of size < k — 2."We will obtain a
contradiction by (k — 1)-coloring of G. We can (k — 1)-color both components of G — E independently but to
obtain a coloring of G, we may need to permute the colors on one side (in order to avoid monochromatic edges
of E). We will achieve this as it is described bellow by the use of Hall's theorem: A balanced bipartite graph
with bipartition A, B has a perfect matching if only if for every subset S C A holds |[N(S)| > |S|, i.e., S has as
many neighbours in B as its size is.

7: Finish the proof by creating creating an auxiliary bipartite graph with vertices on one side and available
colors on the other. Verify Hall’s condition.

te\ ¢ -1
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Lecture 2 - Critical Graphs II

1 Construction of critical graphs

Proposition 1 (Dirac construction). Let Gy be a ki-critical graph mﬁgg_g\kg-cm’tz'cal graph. Then, the join

G1+ Ga is (k1 + ka)-critical. O
A1
(..(

1111

Go

Proposition 2 (Mycielski construction). If G is a k-critical graph, then Mycielski graph M(QG) is (k+1)-critical.
Proposition 3 (Hajds construction). Let G; and Ga be disjoint k-critical graphs, and x;y; an edge in G; for
i =1,2. Then, the graph H obtained by the following three steps is k-critical:

e identify 1 in xa,

e remove the edges x1y1 and Tay2, and

NS (K- ) Lo gLy
\

v S '
Y1 Y2 n Y2
%
& A ) @
G Z1 i) .Z‘l\: T2
\ C,

Hajés construction performed on a pair of Kys gives the Moser spindle graph.

e connect vertices y1 and ya.

1: Prove the propositions.

@ T It
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) esult is used in coloring graphs
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S

Gallai succeeded to characterize the "small” critical graphs as join graphs.
on surfaces, since there we often deal with small critical graphs.

Theorem 4 (Gallai). Let G be a k-critical graph with k > 4 and with n vertices-suchthatn < 2k — 2. Then,
there exists a ki-critical graph G1 and kg-critical graph Gy such that G is G + G2 and k = ky + ko.

The following construction of critical graphs on 2k —1 vertices shows that the bound 2k —2 is optimal. Moreover,
these graphs are example of critical graphs with connectivity two, and for more such graphs, one can use the
Hajos construction.

Proposition 5. Let G be the graph obtained in the following way:
e V(G)=AUBU C U {u, v}, where these sets are nonempty and disjoint;

e G[A] is (k — 2)-clique and G[BUC) is (k—1)- clzque,
e N(u)=AUB and N(v) = AUC.

Then G is k-critical.

2: Prove the Proposition above.

Solution: =V
(1z-1) sy, &
QZ-‘U onv Byl .. MW PAVS DIFFCLSV T eowky
ims (e-3) Lerte £y A

In a k-critical graph, vertices of degree k — 1 are called low vertices, and are denote by L(G). Similarly, the
vertices of degree > k are called high vertices, and are denote by H(G). An interesting generalization of Brooks
theorem is the following result of Gallai.

Theorem 6 (Gallai). In a k-critical graph with k > 4, low vertices induce a forest (possibly empty) whose
blocks are odd cycles and complete graphs. ) , A
T el <de

ke \> ' maes\ TR LY
G M‘TVL. Covotayy
"\rp?
For now, we leave its proof as an exercise, but later when we consider list-colorings we will derive it as a
corollary. Trees/forests with blocks described in the above theorem, nowdays are called Gallai trees/forests.

AAAA e Dictn Qralavel-i and Rarnard Taidieky
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2 Minimum number of edges in critical graphs

Let G be a k-critical graph on n vertices and with m edges.

3: Give a lower bound on m.
Hint: Minimum degree. Can you improve by using Brook’s Theorem?

W VLS L ~CT (AL \IAPH [ —co. TLAL Gmaph O LG) >k
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We give two classical improvements one is due to Gallai and the other due to Dirac. Nowadays these bounds
are improved.

Theorem 7 (Gallai). Let G # K, be a k-critical graph on n vertices and with m edges. Then

E—8%  %e—1)

E—i"" —a" 1)

2m 2 (k—1)n+

Notice that the above inequality is a better one for graphs with large number of vertices, and for dealing with
graphs of small number of vertices is more appropriate the following one of Dirac.

Theorem 8 (Dirac). Let G # K. be a k-critical graph on n vertices and with m edges. Then

o2m > (k—1)n+k— 3. (2)

Kostochka and Yancey give a further improvement.

Theorem 9 (Kostochka and Yancey). If k > 4 and G is a k-critical graph on n vertices and with m edges.

Then 5 (k+1)(k—2)n — k(k —3) (3)
m 2 [ 2(k— 1) ] '

The bound in Theorem 9 is tight for k = 4 and every n > 6. For k > 5, the bound is exact for every n = 1(
mod k—1),n# 1.

4: Evaluate all three bounds for several values of k. Can you find a construction matching Kostochka and
Yancey bound?

AMAM hv Riste Skrekovski and Bernard Lidicky



