Chapter 2.5 - Continuous Functions

Motivation for Continuous Function

Recall: For polynom P(x) holds $\lim_{x \to a} P(x) = P(a)$. What should happen at $x \to a$ happens at x = a.

This is a nice property and behavior, called *continuous*.

$$f(x)$$
 is continuous at $x = a$ if $\lim_{x \to a} f(x) = f(a)$

Some Continuous Functions

If f is continuous at a, the following three MUST ALL happen:

- $\lim_{x \to a} f(x)$ exists
- ► f(a) exists
- $\lim_{x\to a} f(x) = f(a)$

If any of them fail, *f* is *not* continuous at *a*.

The following are continuos at all points

- Polynomials
- Rational functions where denominator $\neq 0$.
- ► $\sin x$, $\cos x$, e^x ,
- $\ln x$ for x > 0

Intuition: If you can draw the graph of f around a with one stroke, then f is continuous at a.

Types of Discontinuity

Removable by (re)defining the function at x = a, we can fix the problem. Example: Is $f(x) = (x^2 - 1)/(x - 1)$ continuous at x = 1? It is not defined at x = 1, but

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

Removable discontinuities are great because we can "fix" them. The piecewise-defined function

$$F(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1\\ 2 & x = 1 \end{cases}$$

is basically the function f, but with the open hole at x = 1 filled in.

Jump, left and right hand limits exist but disagree.

Example:

$$f(x) = \begin{cases} x+3 & x < 1\\ 2 & x = 1\\ 2x-2 & x > 1 \end{cases}$$

at x = 1.

$$\lim_{x \to 1^{-}} f(x) = 4$$
$$\lim_{x \to 1^{+}} f(x) = 0$$

Hence $\lim_{x\to 1} f(x)$ does not exist.

More Types of Discontinuity

Oscilating if limit does not exist due to oscilating.

Example:

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x > 1\\ 0 & x \le 0 \end{cases}$$

at x = 0.

Infinite Discontinuity appears when asymptote from one (or both) sides. More in next section. Example:

$$f(x) = \begin{cases} \frac{1}{x^2} & x \neq 0\\ 0 & x = 0 \end{cases}$$

at x = 0.

$$\lim_{x \to 0^{-}} f(x) = 0$$
$$\lim_{x \to 0^{+}} f(x) \text{ does not exist}$$

$$\lim_{x \to 0^{-}} f(x) = \infty$$
$$\lim_{x \to 0^{+}} f(x) = \infty$$

Hence $\lim_{x\to 0} f(x)$ does not exist.

Hence one could say $\lim_{x\to 0} f(x) = \infty$ but we cannot have $f(x) = \infty$.

Continuous Function

A function is *continuous* if it is continuous at *every* point.

Intuition: If you could draw the graph of f with one stroke.

Example: Find a and b so that f(x) is continuous and

$$f(x) = \begin{cases} X & x < -1 \\ ax + b & -1 \le x \le 1 \\ Y & x > 1 \end{cases}$$

We need $\lim_{x\to -1} f(x)$ to exist. Hence f(-1) = -1. This means a(-1) + b = X. Same, $\lim_{x\to 1} f(x)$ gives a + b = Y. One can add them together and get 2b = (X + Y) hence b = (X + Y)/2. Now a = Y - (X + Y)/2 = (Y - X)/2.

Combining Continuous Functions

If f(x) and g(x) are continuous Example: Is f(x) continuous? then so are

- \blacktriangleright f(x) + g(x)
- Kf(x) for $K \in \mathbb{R}$
- \blacktriangleright f(x)g(x)
- $\frac{f(x)}{g(x)}$ if $g(x) \neq 0$
- $(f(x))^q$ for reasonable q $a \in \mathbb{N}^+$
- f(g(x)) composition

$$f(x) = \frac{\sin(e^x + \pi - 1) + x^3 - 16\cos(\sin(x))}{x^4 + 2 + \sin^2(e^x - e^{-x}) + \ln(x^2 + 1)}$$

Yes. The functions $\sin x$, e^x , $\cos x$ are continuous. Also $\ln x$ is continuous for x > 0 and notice that $x^2 + 1 > 1$. In particular $\ln x^2 + 1 > 0$. Hence the denominator is > 0 and f(x) is continuous.

Nice fact about continuous functions:

 $\lim_{x \to a} f(x) = f(a)$

Example: Given f(x) above find $\lim_{x\to 0} f(x) =$ $\frac{\sin(\pi) + 0 - 16\cos(0)}{0 + 2 + \sin^2(0) + \ln(1)} = -8$

Intermediate Value Theorem

If f(x) is *continuous* on [a, b], f(b) there is a c in [a, b] with f(c) = y.

Example: $f(x) = 18x^3 - 63x^2 + 67x - 20$ then for any y between f(a) and Does f(x) have a root for $0 \le x \le 1$? f(x)is continuous. Also f(0) = -20 and f(1) = 2. The IVT implies there is $c \in [0, 1]$ such that f(c) = 0. Actually, $c = \frac{1}{2}$. Does f(x) have a root for $1 \le x \le 2$? f(1) = 2 and f(2) = 6. The IVT does not say anything about the roots! There are two roots $\frac{4}{3}$ and $\frac{5}{3}$. Example: Show exists 0 < x that $\cos(x) = x$. Let $f(x) = \cos(x) - x$. Using x = 0 and $x = \frac{\pi}{2}$ yields

$$f(0) = \cos(0) - 0 = 1$$
 $f(\frac{\pi}{2}) = \cos(\frac{\pi}{2}) - \frac{\pi}{2} = -\frac{\pi}{2}$

As 0 in $\left[-\frac{\pi}{2}, 1\right]$, the intermediate value theorem implies that there exists a c in $[0, \frac{\pi}{2}]$ such that $0 = f(c) = \cos(c) - c$ and thus $\cos(c) = c.$

$\cos(\cos(\cos(\ldots\cos(x)\ldots)))$

What happens when you type to calculator $\underline{0}$ and keep pressing \cos button? (in Rad)

Let's move between points

 $(0,0), (0,\cos(0)), (\cos(0),\cos(0)), (\cos(0),\cos(\cos(0))), (\cos(\cos(0)),\cos(\cos(0))), \dots$

Notice the green spiral is behaving like a fractal.

Chapter 2.5 Recap

- f(x) is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$
- f is continuous if it is continuous at every point
- Removable discontinuity, jump, oscillation, asymptotes (next time)
- combining continuous functions gives continuous function
- Intermediate Value Theorem