Chapter 3.2 - The Derivative as a Function



Recall The Derivative at a Point

The derivative of a function f at a point xo, denoted f’(xp), is

F(x0) = A@O f(xo + hl)7 — f(x0)

provided this limit exists.
f’(xo0) can be interpreted as
> The slope of the graph of y = f(x) at x = xg

> The slope of the tangent to the curve y = f(x) at x = xg

> The rate of change of f(x) with respect to x at x = xg



The Derivative of f

Try to compute f'(xp) for all xo at once.

The derivative of a function f(x) is a function f’ defined as

F(x) = ,|7i_f)“0 f(x+hl)1— f(x)

provided this limit exists.

Alternatively, making the change of variables z = x + h:

£(x) = lim L& =)

z—x Z— X

f is differentiable if the derivative is defined for all x



Example e f

Use f'(x) = lim flx+h) — fx)
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compute the derivative of f(x) = x
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Example 2

N g
Use f'(x) = /I;To -

compute the derivative of g(t) = v/t

f(x+ h) — f(x)
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compute the derivative of h(r) =

1_1

K (r) = lim &L

z—r Z —
nict o
= lim —
z—r z—1r zr

. r—z

= lim

r



Function and Operator
Function Derivative Operator

There are many ways to denote the derivative of y = f(x).
Here's some common alternative notations:

)=y =2 =% = 9 Tr60] = D)) = Dalf(0)]



Where Derivative Does NOT Exists

Derivative not existing is like tangent not existing.
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Graphing the Derivative
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Graphing f from f’




Continuity and Derivative
Theorem (Differentiability Implies Continuity)
If f has a derivative at x = a then f is continuous at a.

Proof: Suppose that f is differentiable at x = a, then

lim £(x) = im [£(x) ~ () + (3)]
= tim | F9=1 (o) 100

= f'(a) -0+ f(a) = f(a)

Note that the order matters here: if differentiable, then continuous.

The converse of this statement is not true!

There are very scary continuous function that are differentiable nowhere.
Most functions are actually very scary!
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Weierstrass function f(x) = >, a" cos(b"mx)
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Looks like a fractal. Zooming in is NOT getting f closer to a line.



One-sided Derivatives

Recall: Limit exists if both one-sided limit exists and are equal.

Useful if the derivative does not exist, such as on the boundary of the domain.

Example: Compute one-sided derivative of f(x) = |x| at xo =0

From the left:

f(XO + h) — f(Xo)
h

lim
h—0—
f _
_ jim f(0+h)—f(0)
h—0— h
. |0+ h| — 0]
lim ——
h—0— h
lim 1
= Im —=-
h—0— h

From the right:

f(Xo + h) — f(Xo)

\O + h| — 0]
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Chapter 3.2 Recap

v

Derivative of f is a function whose values are slopes of tangents to f

R f/(X):Alno f(x+hf),ff(x)

Derivative does not have to exists

v

One sided version of derivative

v
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