MONE

2 2

ì

Chapter 7.1 Turán's Theorem

General problem: For a fixed graph F and number n, find an n-vertex graph maximizing the number of edges while avoiding F as a subgraph.

Theorem 1 (Mantel's Theorem, 1907). The maximum number of edges in a graph on n vertices with no triangle subgraph is $\lfloor \frac{n^2}{4} \rfloor$.

1: Show that the *n*-vertex complete balanced bipartite graph has $\lfloor \frac{n^2}{4} \rfloor$ edges. It means that the bound in Mantel's theorem is achieved by some graphs.

$$\begin{bmatrix} \frac{N}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{N}{2} \end{bmatrix} = \begin{bmatrix} \frac{N^2}{4} \end{bmatrix}$$

Now we show that there are no triangle-free graphs with more edges than claimed by Mantel's theorem.

2: Prove Mantel's theorem by induction, where the induction step removes two adjacent vertices.

COSO Remixed from notes of Cory Palmer by Bernard Lidický

$$= \frac{k \cdot (k-1)}{2} + \left(\frac{k-1}{k}\right) \frac{k^2 - 2kn + k^2}{2} + (k-k) \cdot (k-1)$$

$$= \left(\frac{k-1}{k}\right) \frac{k^2 + n^2 - 2kn + k^2 + 2 \cdot k \cdot (n-k)}{2} = \left(\frac{k-1}{k}\right) \frac{1}{2}$$

Math 567:20 2/4

Actually, Turán proved more.

Theorem 3 (Turán's Theorem, 1941). The maximum number of edges in an n-vertex graph with no (k + 1)clique is exactly $e(T_k(n))$. Furthermore, $T_k(n)$ is the unique graph attaining this maximum.

Note that $T_k(n)$ is a complete multipartite graph and among complete multipartite graphs with no (k+1)-clique is it the largest. This leads to a ingenious approach: if we can show that a graph G with no (k+1)-clique and the maximum number of edges is complete multipartite then we are done.

5: Prove $T_k(n)$ is the unique extremal graph by using induction on k. Idea: Take a vertex x of maximum degree, use induction on neighbors of x, and maximality arguments on non-neighbors of x.

Instead of determining the maximum number of edges in a K_{k+1} -free graph we may ask how many copies of K_{k+1} are in a graph with some fixed number of edges. We will only show an extension of Mantel's theorem. Let N_s be the number of copies of K_s in G.

Theorem 4 (Goodman bound). For every n-vertex graph G with m edges holds

$$N_3 \ge \frac{m(4m-n^2)}{3n}.$$

The bound is not always tight. Tight asymptotic solution was obtained by Razborov and more precise count is in https://arxiv.org/pdf/1712.00633.pdf. $\mathcal{C} = \mathcal{L} \times \mathcal{N} = \mathcal{L} \times \mathcal{N}$

6: Show that Goodman bound is tight for Turán's graphs $T_k(\ell \cdot k)$. $m = \binom{k}{l} \binom{l}{l}^{2} = \binom{k}{l} \binom{2}{l} m (4m \cdot n^{2}) = \binom{k}{l} \binom{l}{l} \binom{l$

7: Prove Goodman bound. Outline of the proof: For every edge xy, give a lower bound on the number of triangles containing xy (use d(x), d(y), n). Use the bound in \sum over edges and change the \sum to sum over vertices. And then use Cauchy-Schwartz^T.

Denote by ex(n, F) the maximum number of edges in an *n*-vertex graph without any copy of *F*.

Theorem 5 (Erdős-Stone 1946, Erdős-Simonovits, 1966). If F is a graph with chromatic number $\chi(F)$, then

$$\operatorname{ex}(n,F) = \left(1 - \frac{1}{\chi(F) - 1}\right) \frac{n^2}{2} + o(n^2). \qquad \begin{array}{c} \mathcal{K}(F) = 2 \Rightarrow \\ \mathcal{L}(v,F) = \left(1 - \frac{1}{2-1}\right) \frac{v^2}{2} + o(h^2). \end{array}$$

The theorem gives asymptotic result if $\chi(F) \geq 3$. It does not say much about bipartite graphs. **Theorem 6** (Erdős; Kővari-Sós-Turán, 1954). For any naturals $s \leq t$ we have

$$\exp(n, K_{s,t}) \le \frac{1}{2}(t-1)^{1/s}n^{2-1/s} + O(n).$$
 $\mathcal{U}(F) = \mathcal{U}(F)$

Open problem: Determine $ex(n, C_6)$ or $ex(n, C_{2k})$. Open problem: Is $ex(n, T) = \frac{1}{2}(k-1)n$ for a tree T with $k \ge 2$ edges? $f(n) = \sigma(n^2) = \int \lim_{N \to \infty} \frac{f(n)}{n^2} = 0$ $h^2 - \log_2 f(n) \times f(n) \times$

$$M = \sigma(n^{2})$$

$$\sum_{n=1}^{2-0.001} N^{2} = \sigma(n^{2})$$

$$M = \sigma(n^{2})$$

$$M = \sigma(n^{2})$$

$$\int_{V_{n}} \sigma(n) = \sigma(n^{2})$$

$$\int_{V_{n}} \sigma(n) = \sigma(n^{2})$$

$$\int_{V_{n}} \sigma(n) = \sigma(n^{2})$$

$$\int_{V_{n}} \sigma(n) = \sigma(n^{2})$$