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Chapter 7.1 Turan’s Theorem

General problem: For a fixed graph F' and number n, find an n-vertex graph maximizing the number of edges
while avoiding F' as a subgraph.

Theorem 1 (Mantel’s Theorem, 1907). The mazimum number of edges in a graph on n vertices with no triangle

subgraph is |_"T2j ¢ ALl
1: Show that the n-vertex complete balanced bipartite graph has L”sz edges. ~ Morg
It means that the bound in Mantel’s theorem is achieved by some graphs. ¢
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Now we show that there are no triangle-free graphs with more edges than claimed by Mantel’s theorem.

2: Prove Mantel’s theorem by induction, where the induction step removes two adjacent vertices.
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Theorem 2 (weak Turdn’s Theorem, 1941). The mazimum number of edges TV Qatw

in a graph on n vertices with no (k + 1)-clique subgraph is at most M Y )
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Let Ti(n) be a complete k-partite graph on n vertices with parts of as equal ¥ ”’1 “
sizes as possible, i.e., sizes are |7 ] or [#]. Another way of defining it would W
be a balanced blow-up of Kj. Such graph is called the Turdn graph. = @’ Y'E'\

3: Show that T (n) gives asymptotically tight lower bound for Turan’s theorem.
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4: Prove Turdn’s theorem by induction. Idea: Find a clique A of size k and remove it for induction.
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Actually, Turéan proved more.

Theorem 3 (Turdn’s Theorem, 1941). The mazimum number of edges in an n-vertex graph with no (k+ 1)-
clique is exactly e(Ty(n)). Furthermore, Ti(n) is the unique graph attaining this mazximum.

Note that T (n) is a complete multipartite graph and among complete multipartite graphs with no (k+1)-clique
is it the largest. This leads to a ingenious approach: if we can show that a graph G with no (k + 1)-clique and
the maximum number of edges is complete multipartite then we are done.

5: Prove Tj(n) is the unique extremal graph by using induction on k. Idea: Take a vertex z of maximum
degree, use induction on neighbors of x, and maximality arguments on non-neighbors of x.
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Instead of determining the maximum number of edges in a Kj1-free graph we may ask how many copies of
Ky are in a graph with some fixed number of edges. We will only show ankg\xtension of Mantel’s theorem.
Let N be the number of copies of K, in G.
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Theorem 4 (Goodman bound). For every n-vertex graph G with m edges holds Ny aw

m(4m — ng).

N3 >
3= 3n

The bound is not always tight. Tight asymptotic solution was obtained by Raz ecise count is
in https://arxiv.org/pdf/1712.00633.pdf!
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6: Show that Goodman bound is tight for Turdn’s graphs Ty (¢ - k).
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7: Prove Goodman bound. Outline of the proof: For every edge xy, give a lower bound on the number of
triangles containing zy (use d(z),d(y),n). Use the bound in > over edges and change the ) to sum over
vertices. And then use Cauchy-Schwart
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Denote by ex(n, F') the maximum number of edges in an n-vertex graph without any copy of F.
Theorem 5 (Erdds-Stone 1946, Erdds-Simonovits, 1966). If ' is a graph with chromatic number x(F'), then

1 n? (M =1=
ex(n, F) = (1 — X(F)—1> > +o(n?). Q}((\_‘ o = ( |- —\.{‘L&(\;

The theorem gives asymptotic result if y(F) > 3. It does not say much about bipartite graphsl . &)

Theorem 6 (Erdds; Kovari-Sés-Turdn, 1954). For any naturals s < t we have

ex(n, Kqz) < =(t — 1)Y*n>71* + O(n).
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X (k) =K

Open problem: Determine ex(n, Cs) or ex(n, Cay).

Open problem: Is ex(n,T) = (k — 1)n for a tree T with k > 2 edges?
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