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Chapter 7.1 Turán’s Theorem

General problem: For a fixed graph F and number n, find an n-vertex graph maximizing the number of edges

while avoiding F as a subgraph.

Theorem 1 (Mantel’s Theorem, 1907). The maximum number of edges in a graph on n vertices with no triangle

subgraph is bn2

4 c.

1: Show that the n-vertex complete balanced bipartite graph has bn2

4 c edges.
It means that the bound in Mantel’s theorem is achieved by some graphs.

Solution: Observe that the n-vertex complete bipartite
graph with class sizes dn

2
e and bn

2
c has no triangle subgraph

and has exactly dn
2
ebn

2
c = bn2

4
c edges.

Now we show that there are no triangle-free graphs with more edges than claimed by Mantel’s theorem.

2: Prove Mantel’s theorem by induction, where the induction step removes two adjacent vertices.

Solution: Induction on n. If n = 1, 2 we are done, so assume n > 2 and that the
statement of the theorem holds for smaller graphs. Let G be a triangle-free graph on
n vertices and let xy be an edge of G. The graph G � xy is obviously triangle-free
and has n � 2 vertices, so it has at most b (n�2)

2

4
c edges by induction. The edge xy

has at most n � 2 edges incident (otherwise there is a triangle). Thus G has at most

1 + (n� 2) + (n�2)
2

4
= n

2

4
edges.

Theorem 2 (weak Turán’s Theorem, 1941). The maximum number of edges

in a graph on n vertices with no (k + 1)-clique subgraph is at most

✓
1� 1

k

◆
n
2

2
.

Let Tk(n) be a complete k-partite graph on n vertices with parts of as equal

sizes as possible, i.e., sizes are bnk c or dnk e. Another way of defining it would

be a balanced blow-up of Kk. Such graph is called the Turán graph.

3: Show that Tk(n) gives asymptotically tight lower bound for Turán’s theorem.

Solution: It is easy to see that Tk(n) cannot contain a (k+1)-clique as any set of k+1
vertices in Tk(n) will have two vertices in the same class and therefore not connected
by an edge. Furthermore, e(Tk(n)) �

�
k

2

�
(bn

k
c)2 >

�
k

2

�
(n
k
� 1)2 = (1� 1

k
)n

2

2
�O(n).

4: Prove Turán’s theorem by induction. Idea: Find a clique A of size k and remove it for induction.

Solution: [First proof.] (Turán, 1941) Induction on n. The theorem is trivially true for
n  k, so let n > k and assume the theorem holds for smaller graphs. Let G be a graph
on n vertices with no (k + 1)-clique and the maximum number of edges. Therefore, G
must contain a k-clique as otherwise we could add edges to G contradicting maximality.
Let A be a clique of size k and let B be the remaining n � k vertices. The graph B
has no (k + 1)-clique so by induction e(B)  (1 � 1

k
) (n�k)

2

2
. Furthermore, each vertex
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in B can have at most k � 1 neighbors in A, so we have

e(G) 
✓
k

2

◆
+

✓
1� 1

k

◆
(n� k)2

2
+ (n� k)(k � 1) =

✓
1� 1

k

◆
n2

2
.

Actually, Turán proved more.

Theorem 3 (Turán’s Theorem, 1941). The maximum number of edges in an n-vertex graph with no (k + 1)-

clique is exactly e(Tk(n)). Furthermore, Tk(n) is the unique graph attaining this maximum.

Note that Tk(n) is a complete multipartite graph and among complete multipartite graphs with no (k+1)-clique

is it the largest. This leads to a ingenious approach: if we can show that a graph G with no (k + 1)-clique and

the maximum number of edges is complete multipartite then we are done.

5: Prove Tk(n) is the unique extremal graph by using induction on k. Idea: Take a vertex x of maximum

degree, use induction on neighbors of x, and maximality arguments on non-neighbors of x.

Solution: [Second proof.] (Erdős, 1970) Induction on k. The theorem is trivially
true for k = 1, so let k > 1 and assume the theorem holds for k � 1. We will prove
that if G has no (k + 1)-clique and the maximum number of edges, then G = Tk(n).
Let x be a vertex of maximum degree, let S be the neighbors of x and let T = G� S
be the remaining vertices. The graph S has no k-clique (as otherwise we could build
a (k + 1)-clique with x). Let us construct a new graph H on the vertex set of G as
follows. The graph H is the same as G on S, it contains all edges between S and T ,
and it has no edges in T . Observe that all degrees in H are at least as large as in G.
Thus H has at least as many edges as G. However, if the graph G has an edge in T ,
then H would have more edges. Therefore, as G was maximal, T contains no edges
in G and thus G = H. Because S does not contain a k-clique, H does not contain a
(k+1)-clique and therefore H is a graph with the maximum number of edges with this
property. Furthermore, S must be an edge-maximal graph with no k-clique. Thus, by
induction on k, we have S = Tk�1(|S|), so H is a complete multipartite graph. The
largest (most edges) n-vertex complete multipartite graph with no (k + 1)-clique is
Tk(n).
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Instead of determining the maximum number of edges in a Kk+1-free graph we may ask how many copies of

Kk+1 are in a graph with some fixed number of edges. We will only show an extension of Mantel’s theorem.

Let Ns be the number of copies of Ks in G.

Theorem 4 (Goodman bound). For every n-vertex graph G with m edges holds

N3 �
m(4m� n

2
)

3n
.

The bound is not always tight. Tight asymptotic solution was obtained by Razborov and more precise count is

in https://arxiv.org/pdf/1712.00633.pdf.

6: Show that Goodman bound is tight for Turán’s graphs Tk(` · k).

Solution: Let Tk(k`) be a Turán’s graph on n vertices, i.e., n = k`. Thee vertices
induce a triangle i↵ they are from three di↵erent parts, so N3 =

�
k

3

�
`3. On the other

hand, e =
�
k

2

�
`2, hence we get

✓
k

3

◆
`3 = N3 =

m(4m� n2)

3n
=

�
k

2

�
`2(4

�
k

2

�
`2 � (k`)2)

3k`

7: Prove Goodman bound. Outline of the proof: For every edge xy, give a lower bound on the number of

triangles containing xy (use d(x), d(y), n). Use the bound in
P

over edges and change the
P

to sum over

vertices. And then use Cauchy-Schwartz
1
.

Solution: The number of triangles using edge xy is at least d(x) + d(y)� n (as this
counts the number of common neighbors of x and y). Summing over all edges counts
each triangle three times, so the total number of triangles is at least

1

3

X

xy2E(G)

(d(x) + d(y)� n) =
1

3

0

@
X

x2V (G)

d(x)2 � nm

1

A .

Applying Cauchy-Schwartz inequality gives the total number of triangles is at least

1

3

0

B@
1

n

0

@
X

x2V (G)

d(x)

1

A
2

� nm

1

CA =
4m

3n

✓
m� n2

4

◆
.

1(
P

aibi)
2  (

P
a2
i )(

P
b2i )
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Denote by ex(n, F ) the maximum number of edges in an n-vertex graph without any copy of F .

Theorem 5 (Erdős-Stone 1946, Erdős-Simonovits, 1966). If F is a graph with chromatic number �(F ), then

ex(n, F ) =

✓
1� 1

�(F )� 1

◆
n
2

2
+ o(n

2
).

The theorem gives asymptotic result if �(F ) � 3. It does not say much about bipartite graphs.

Theorem 6 (Erdős; Kővari-Sós-Turán, 1954). For any naturals s  t we have

ex(n,Ks,t) 
1

2
(t� 1)

1/s
n
2�1/s

+O(n).

Open problem: Determine ex(n,C6) or ex(n,C2k).

Open problem: Is ex(n, T ) =
1
2(k � 1)n for a tree T with k � 2 edges?
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