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Abstract6

All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-7

choosable. Determining which properties guarantee that a planar graph can be colored using8

lists of size four has received significant attention. In terms of constraining the structure of the9

graph, for any ` ∈ {3, 4, 5, 6, 7}, a planar graph is 4-choosable if it is `-cycle-free. In terms of10

constraining the list assignment, one refinement of k-choosability is choosability with separation.11

A graph is (k, s)-choosable if the graph is colorable from lists of size k where adjacent vertices12

have at most s common colors in their lists. Every planar graph is (4, 1)-choosable, but there13

exist planar graphs that are not (4, 3)-choosable. It is an open question whether planar graphs14

are always (4, 2)-choosable. A chorded `-cycle is an `-cycle with one additional edge. We15

demonstrate for each ` ∈ {5, 6, 7} that a planar graph is (4, 2)-choosable if it does not contain16

chorded `-cycles.17

1 Introduction18

A proper coloring is an assignment of colors to the vertices of a graph G such that adjacent vertices19

are assigned distinct colors. A (k, s)-list assignment L is a function that assigns a list L(v) of k20

colors to each vertex v so that |L(v)∩L(u)| ≤ s whenever uv ∈ E(G). A proper coloring φ of G such21

that φ(v) ∈ L(v) for all v ∈ V (G) is called an L-coloring. We say that a graph G is (k, s)-choosable22

if, for any (k, s)-list assignment L, there exists an L-coloring of G. We call this variation of graph23

coloring choosability with separation. Note that when a graph is (k, k)-choosable, we simply say24

it is k-choosable. Observe that if G is (k, t)-choosable, then G is (k, s)-choosable for all s ≤ t. A25

notable result from Thomassen [11] states that every planar graph is 5-choosable, so it follows that26

all planar graphs are (5, s)-choosable for all s ≤ 5.27

Forbidding certain structures within a planar graph is a common restriction used in graph28

coloring. Theorem 1.2 summarizes the current knowledge on (3, 1)-choosability of planar graphs.29

Škrekovski [13] conjectured that all planar graphs are (3, 1)-choosable; this question is still open30

and is presented below as Conjecture 1.1.31
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Conjecture 1.1 (Škrekovski [13]). If G is a planar graph, then G is (3, 1)-choosable.32

Theorem 1.2. A planar graph G is (3, 1)-choosable if G avoids any of the following structures:33

- 3-cycles (Kratochv́ıl, Tuza, Voigt [9]).34

- 4-cycles (Choi, Lidický, Stolee [4]).35

- 5-cycles and 6-cycles (Choi, Lidický, Stolee [4]).36

In this paper, we focus on 4-choosability with separation. Kratochv́ıl, Tuza, and Voigt [9] proved37

that all planar graphs are (4, 1)-choosable, while Voigt [12] demonstrated that there exist planar38

graphs that are not (4, 3)-choosable. It is not known if all planar graphs are (4, 2)-choosable.39

Conjecture 1.3 (Kratochv́ıl, et al. [9]). If G is a planar graph, then G is (4, 2)-choosable.40

Theorem 1.4 (Kratochv́ıl, et al. [9]). If G is a planar graph, then G is (4, 1)-choosable.41

Theorem 1.4 was strengthened by Kierstead and Lidický [8], where it is shown that we can42

allow an independent set of vertices to have lists of size 3 rather than 4.43

Theorem 1.5 (Kierstead and Lidický [8]). Let G be a planar graph and I ⊆ V (G) be an independent44

set. If L assigns lists of colors to V (G) such that |L(v)| ≥ 3 for every v ∈ I, and |L(v)| = 4 for45

every v ∈ V (G) \ I, and |L(u) ∩ L(v)| ≤ 1 for all uv ∈ E(G), then G has an L-coloring.46

In addition to the work summarized above, there are several results regarding 4-choosability.47

A graph is k-degenerate if each of its subgraphs has a vertex of degree at most k. Euler’s formula48

implies a planar graph with no 3-cycles is 3-degenerate and hence 4-choosable. This and other49

similar results are listed below in Theorem 1.6. For the last result in Theorem 1.6, note that a50

chorded `-cycle is an `-cycle with an additional edge connecting two of its non-consecutive vertices.51

Theorem 1.6. A planar graph G is 4-choosable if G avoids any of the following structures:52

- 3-cycles (folklore).53

- 4-cycles (Lam, Xu, Liu, [10]).54

- 5-cycles (Wang and Lih [14]).55

- 6-cycles (Fijavz, Juvan, Mohar, and Škrekovski [7]).56

- 7-cycles (Farzad [6]).57

- Chorded 4-cycles and chorded 5-cycles (Borodin and Ivanova [3]).58

Our main results in this paper are listed below in Theorem 1.7.59

Theorem 1.7. A planar graph G is (4, 2)-choosable if G avoids any of the following structures:60

- Chorded 5-cycles.61

- Chorded 6-cycles.62

- Chorded 7-cycles.63

We prove each case of Theorem 1.7 separately. In Section 4, we forbid chorded 5-cycles (see64

Theorem 4.1). In Section 5, we forbid chorded 6-cycles (see Theorem 5.1). In Section 6, we forbid65

chorded 7-cycles (see Theorem 6.2). There are many features common to all of these proofs, which66

we detail in Sections 2 and 3.67
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1.1 Preliminaries and Notation68

Refer to [15] for standard graph theory terminology and notation. Let G be a graph with a vertex69

set V (G) and an edge set E(G); let n(G) = |V (G)|. We use Kn, Cn, and Pn to denote the complete70

graph, cycle graph, and path graph, respectively, each on n vertices. The open neighborhood of a71

vertex, denoted N(v), is the set of vertices adjacent to v in G; the closed neighborhood, denoted72

N [v], is the set N(v) ∪ {v}. The degree of a vertex v, denoted dG(v), is the number of vertices73

adjacent to v in G; we write d(v) when the graph G is clear from the context. If the degree of a74

vertex v is k, we call v a k-vertex ; if the degree of v is at least k (at most k), we call v a k+-vertex75

(k−-vertex respectively). The length of a face f , denoted `(f), is the length of the face boundary76

walk. If the length of a face f is k, we call f a k-face; if the length of f is at least k, we call f a77

k+-face.78

2 Overview of Method79

All of our main results use the discharging method. We refer the reader to the surveys by Borodin [2]80

and Cranston and West [5] for an introduction to discharging, which is a method commonly used81

to obtain results on planar graphs. For real numbers av, af , b, we define initial charge values82

µ0(v) = avd(v) − b for every vertex v and µ0(f) = af `(f) − b for every face f . If av > 0, af > 0,83

b > 0, and 2av + 2af = b, then Euler’s formula implies that
∑

v µ0(v) +
∑

f µ0(f) = −2b, and84

the total charge on the entire graph is negative. We then define discharging rules that describe a85

method for moving charge value among vertices and faces while conserving the total charge value.86

We demonstrate that if G is a “minimal counterexample” to our theorem, then every vertex and face87

ends with nonnegative charge after the discharging process, which is a contradiction. Intuitively,88

this process works well when forbidding a structure (such as a short chorded cycle) with low charge.89

In Section 3, we concretely define reducible configurations. Loosely, a reducible configuration is90

a structure C in a graph G with (4, 2)-list assignment L where any L-coloring of G−C extends to an91

L-coloring of G. If we are looking for a minimal example of a graph that is not (4, 2)-choosable, then92

none of these reducible configurations appear in the graph. We define a large list of configurations,93

(C1)–(C21) (see Figure 2), and prove they are reducible using various generic constructions. The94

configurations (C1)–(C10) are used when forbidding chorded 6- or 7-cycles, while the configurations95

(C9)–(C21) are used when forbidding chorded 5-cycles. The use of different configurations is due96

to differences in our discharging arguments.97

In Section 4, we forbid chorded 5-cycles and every 3-face is adjacent to at most one other 3-98

face. Moreover, 3-faces are not adjacent to 4-faces. Thus, our initial charge function in this case99

guarantees that the only objects with negative initial charge are 4- and 5-vertices.100

In Sections 5 and 6, we use a different discharging strategy. Our initial charge values guarantee101

that the only objects of negative charge are 3-faces. Thus, our discharging rules are designed to102

send charge from 5+-faces and 4+-vertices to 3-faces. However, as we forbid chorded 6-cycles or103

chorded 7-cycles, there may not be many 3-faces very close to each other.104

If G is a plane graph and G∗ is its dual, then let F3 be the set of 3-faces of G and let G∗3 be105

the induced subgraph of G∗ with vertex set F3. A cluster is a maximal set of 3-faces that are106

connected in G∗, i.e., a connected component of G∗3. Note that two 3-faces sharing an edge are107

adjacent in G∗, and two 3-faces sharing only a vertex are not adjacent in G∗. See Figure 1 for a list108

of the clusters with maximum cycle length six and every internal vertex of degree at least four. In109

these figures, the outer cycle is not necessarily a facial cycle, any area filled with gray is not a face,110
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These are all of the possible clusters with longest cycle at most six and minimum degree four. Bold edges

demonstrate separating 3-cycles. Gray regions designate cycles that are not faces. We group our clusters by the

length of the longest cycle in the cluster. Thus a configuration (Kni) has a maximum cycle length of n.

Figure 1: Clusters with maximum cycle length at most six.
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and a pair of square vertices represent a single vertex. Additionally, bold edges describe separating111

3-cycles, which are cycles in a plane graph whose exterior and interior regions both contain vertices112

not on the cycle. These figures are based on the list of clusters used by Farzad [6] in the proof that113

7-cycle-free planar graphs are 4-choosable.114

For k ∈ {1, 2}, there is exactly one way to arrange k 3-faces in a cluster. A triangle is a cluster115

containing exactly one 3-face; see (K3). A diamond is a cluster containing exactly two 3-faces; see116

(K4). For k ≥ 3, there are multiple ways to arrange k facial triangles in a cluster. A k-fan is a117

cluster of k 3-faces all incident to a common vertex of degree at least k+1; see (K5a) and (K6b). A118

k-wheel is a cluster of k 3-faces all incident to a common vertex of degree exactly k; see (K5b) and119

(K6e). Note that the vertex incident to all faces of a 3-wheel has degree 3. A k-strip is a cluster of120

k 3-faces f1, . . . , fk where the boundaries of the 3-faces are disjoint except that fi and fi+1 share121

an edge for i ∈ {1, . . . , k − 1} and fi and fi+2 share a vertex for i ∈ {1, . . . , k − 2}; see (K5a) and122

(K6a).123

If f1, . . . , fk are the 3-faces in a cluster, then we will prove that the total charge on f1, . . . , fk124

after discharging is nonnegative. Thus, some of the 3-faces may have negative charge, but this is125

balanced by other 3-faces in the cluster having positive charge. Hence, our proofs end with a list126

of all possible cluster types and verifying that each has nonnegative total charge.127

While there are 23 total clusters that avoid chorded 7-cycles, we do not have that many cases to128

check. The clusters (K5c) and (K6g)–(K6r) have three bold edges, demonstrating a separating 3-129

cycle. We avoid checking these cases by using a strengthened coloring statement (see Theorem 6.2)130

that allows our minimal counterexample to not contain any separating 3-cycles.131

3 Reducible Configurations132

In this section, we describe structures that cannot appear in a minimal counterexample to Theo-133

rem 1.7. Let G be a graph, f : V (G)→ N, and s be a nonnegative integer. A graph is f -choosable134

if G is L-choosable for every list assignment L where |L(v)| ≥ f(v). An (f, s)-list-assignment is a135

list assignment L on G such that |L(v)| ≥ f(v) for all v ∈ V (G), |L(v) ∩ L(u)| ≤ s for all edges136

uv ∈ E(G), and L(u) ∩ L(v) = ∅ if uv ∈ E(G) and f(u) = f(v) = 1. A graph G is (f, s)-choosable137

if G is L-colorable for every (f, s)-list-assignment L.138

Definition 3.1. A configuration is a triple (C,X, ex) where C is a plane graph, X ⊆ V (C), and139

ex : V (C) → {0, 1, 2,∞} is an external degree function. A graph G contains the configuration140

(C,X, ex) if C appears as an induced subgraph C ′ of G, and for each vertex v ∈ V (C), there are141

at most ex(v) edges in G from the copy of v to vertices not in C ′. For a triple (C,X, ex), define142

the list-size function f : V (C)→ N as143

f(v) =

{
4− ex(v) v ∈ X
1 v /∈ X

.144

A configuration (C,X, ex) is reducible if C is (f, 2)-choosable.145

Note that if a graph G with (4, 2)-list assignment L contains a copy of a reducible configuration146

(C,X, ex) and G−X is L-choosable, then G is L-choosable.147

First, we note that if (C,X, ex) is a reducible configuration, then any way to add an edge148

between distinct vertices of X and lower their external degree by one results in another reducible149

configuration.150
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(C1) (C2) (C3) (C4)

(C5) (C6) (C7) (C8)

(C9) (C10) (C11) (C12)

(C13) (C14) (C15)

(C16) (C17) (C18)

(C19) (C20)
(C21)

In these configurations, edges with only one endpoint are external edges. Vertices in X are filled with white.

Figure 2: Reducible configurations.
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(C1) (C2) (C4) (C5) (C10) (C11)

(C12) (C13) (C14) (C15) (C16)

Figure 3: Alon-Tarsi Orientations.

Lemma 3.2. Let (C,X, ex) be a reducible configuration, and suppose that x, y ∈ X are nonadjacent151

vertices with ex(x), ex(y) ≥ 1. Let (C ′, X ′, ex′) be the configuration where C ′ = C + xy, X ′ = X,152

and ex′(v) =

{
ex(v) v /∈ {x, y}
ex(v)− 1 v ∈ {x, y},

. Then the configuration (C ′, X ′, ex′) is reducible.153

Proof. Let f be the list-size function for C and note that C is (f, 2)-choosable. Similarly let f ′154

be the list-size function on the configuration (C ′, X ′, ex′), and let L′ be an (f ′, 2)-list assignment155

on V (C ′). Note that f ′(x) = f(x) + 1 and f ′(y) = f(y) + 1. Let S = L′(x) ∩ L′(y). If |S| < 2,156

then add at most one element from each of L′(x) and L′(y) to S until |S| = 2. Now let S = {a, b}157

such that a ∈ L′(x) and b ∈ L′(y), and define a list assignment L on C by removing a from L′(x)158

and removing b from L′(y). Observe that L is an (f, 2)-list assignment and hence there exists an159

L-coloring of C. Since L(x)∩L(y) = ∅, this proper L-coloring of C is also an L′-coloring of C ′.160

We will use Lemma 3.2 implicitly by assuming that C[X] appears as an induced subgraph in161

our minimal counterexample G.162

3.1 Reducibility Proofs163

In this section, we prove that configurations (C1)–(C21) shown in Figure 2 are reducible.164

3.1.1 Alon-Tarsi Theorem165

We will use the celebrated Alon-Tarsi Theorem [1] to quickly prove that many of our configura-166

tions are reducible. In fact, configurations that are demonstrated in this way are reducible for167

4-choosability, not just (4, 2)-choosability.168

A digraph D is an orientation of a graph G if G is the underlying undirected graph of D and169

D has no 2-cycles; let d+D(v) and d−D(v) be the out- and in-degree of a vertex v in D. An Eulerian170

subgraph of a digraph D is a subset S ⊆ E(D) such that, for every vertex v ∈ V (D), the number171

of outgoing edges of v in S is equal to the number of incoming edges of v in S. Let EE(D) be172

the number of Eulerian subgraphs of even size and EO(D) be the number of Eulerian subgraphs173

of odd size.174
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Theorem 3.3 (Alon-Tarsi Theorem [1]). Let G be a graph and f : V (G)→ N a function. Suppose175

that there exists an orientation D of G such that d+D(v) ≤ f(v)− 1 for every vertex v ∈ V (G) and176

EE(D) 6= EO(D). Then G is f -choosable.177

We call an orientation an Alon-Tarsi orientation if it satisfies the hypotheses of Theorem 3.3.178

For a configuration (C,X, ex) and the associated list-size function f , it suffices to demonstrate an179

Alon-Tarsi orientation of C with respect to f . See Figure 3 for a list of Alon-Tarsi orientations180

of several configurations. One could think that for a vertex v, the outneighbors are vertices that181

could be colored before v and v could still pick a color not conflicting with them. If there were no182

cycles in the orientation, the orientation would give an order suitable for the greedy algorithm.183

Corollary 3.4. The following configurations have Alon-Tarsi orientations and hence are reducible:184

(C1), (C2), (C4), (C5), (C10), (C11), (C12), (C13), (C14), (C15), (C16).185

3.1.2 Direct Proofs186

In the proofs below, we consider a configuration (C,X, ex) with list-size function f and assume187

that an (f, 2)-list-assignment L is given for C. We will demonstrate that each C is L-colorable.188

Refer to Figure 2 for drawings of the configurations.189

First recall the following fact about list-coloring odd cycles.190

Fact 3.5. If L is a 2-list assignment of an odd cycle, then there does not exist an L-coloring of the191

cycle if and only if all of the lists are identical.192

In the proof in this subsection, we use a shorthand notation where for a vertex vi we denote193

color c(vi) by ci and list L(vi) by Li for all i.194

Lemma 3.6. (C3) is a reducible configuration.195

Proof. Let v1, . . . , v4 be the vertices of a 4-cycle with chord v2v4 and let v2 and v4 have external196

degree 1; the colors c1 and c3 are fixed. Each of v2 and v4 have at least one color in their lists other197

than c1 and c3. Since |Li| ≥ 3 for each i ∈ {2, 4}, either one of these vertices has at least two colors198

available, or L2 ∩ L4 = {c1, c3}. In either case, we can extend the coloring.199

For the configurations (C6), (C7), and (C8), label the vertices as in Figure 4: label the center200

vertex v0 and the outer vertices v1, . . . , v5, starting with the vertex directly above v0, moving201

clockwise.202

v0

v2

v1
v5

v4 v3

v0

v2

v1
v5

v4 v3

v0

v2

v1
v5

v4 v3

(C6) (C7) (C8)

Figure 4: Vertex labels for configurations (C6), (C7), and (C8).

Lemma 3.7. (C6) is a reducible configuration.203
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Proof. The colors c1 and c4 are determined. If c1 and c4 are both in L0, then select c5 from204

L5 \ (L0 ∪ {c1, c4}); otherwise, select c5 ∈ L5 \ {c1, c4} arbitrarily. Define L′0 = L0 \ {c1, c4, c5},205

L′2 = L2 \ {c1}, and L′3 = L3 \ {c4} and note that |L′i| ≥ 2 for all i ∈ {0, 2, 3}. If |L′0| = |L′2| = 2,206

then L′0 6= L′2, so the 3-cycle v0v2v3 has an L′-coloring by Fact 3.5.207

Lemma 3.8. (C7) is a reducible configuration.208

Proof. If L1∩L2 = ∅, then greedily color v2 and v3; what remains is (C4) and the coloring extends.209

A similar argument works if L3 ∩ L2 = ∅.210

If L1 ∩ L3 = ∅, then |L1 ∩ L2| = |L3 ∩ L2| = 1. Select c1 ∈ L1 \ L2, c3 ∈ L3 \ L2. Define211

L′0 = L0 \ {c1, c3}, L′4 = L4 \ {c3}, and L′5 = L5 \ {c1}. Observe that we can L′-color the 3-cycle212

v0v4v5 by Fact 3.5 and then select c2 ∈ L2 \ {c0}.213

If there exists a color a ∈ L1 ∩L3, start by assigning c1 = c3 = a and then assign c2 ∈ L2 \ {a}.214

Define L′0 = L0 \ {a, c2}, L′4 = L4 \ {a}, and L′5 = L5 \ {a}. Observe that the 3-cycle v0v4v5 has an215

L′-coloring by Fact 3.5.216

Lemma 3.9. (C8) is a reducible configuration.217

Proof. If there exists a color a ∈ L1 ∩ L4, start by assigning c1 = c4 = a; then greedily color the218

remaining vertices in the following order: v2, v3, v0, v5. Otherwise, L4 ∩ L1 = ∅.219

Suppose that L1 ∩ L5 = ∅. Select a color c4 ∈ L4. Considering v4 as an external vertex and220

ignoring the edges v1v5 and v0v5, the 4-cycle v0v1v2v3 forms a copy of (C4), which is reducible221

by Corollary 3.4. Thus, there exists an L-coloring of v0, . . . , v4; this coloring extends to v5 since222

L1 ∩ L5 = ∅. If L4 ∩ L5 = ∅, then there exists an L-coloring by a symmetric argument.223

Otherwise, there exist colors a ∈ L1 \ L5 and b ∈ L4 \ L5; assign c1 = a and c4 = b. Select224

c2 ∈ L2 \ {a}. Define L′0 = L0 \ {c1, c2, c4} and L′3 = L3 \ {c2, c4}. Note that if |L′0| = |L′3| = 1,225

then L0 ∩L3 = {c2, c4} and hence L′0 ∩L′3 = ∅. Thus, the coloring extends by greedily coloring v3,226

v0, and v5.227

Lemma 3.10. (C9) is a reducible configuration.228

Proof. Consider the vertex v of arbitrary external degree and let c(v) be the color assigned to v.229

Let u1 and u2 be the two neighbors of v in the configuration. If we remove c(v) from the lists on230

u1 and u2, observe that at least two colors remain in every list for every vertex of the 5-cycle. If231

there is no L-coloring of the configuration, then Fact 3.5 asserts that all lists have size two and232

contain the same colors; however, this implies that L(u1) = L(u2) and |L(u1) ∩ L(u2)| = 3, a233

contradiction.234

3.1.3 Template Configurations235

The configurations (C17)–(C21) are special cases of general constructions called template construc-236

tions.237

Let (C,X, ex) be a configuration with vertices u, v ∈ X. A uv-path P is called a special uv-path238

if all internal vertices of P have degree two in C and external degree two. A uv-path P is called an239

extra-special uv-path if all internal vertices v of P have external degree ex(v) = 2 and degree in C,240

denoted by d(v), two, except for a consecutive pair xy where ex(x) = ex(y) = 1, d(x) = d(y) = 3,241

and there is a vertex z /∈ X such that z is a common neighbor to x and y, and z is not adjacent242

to any other vertices in C. Using these special and extra-special paths, we can describe several243

configurations by the following templates (see Figure 5), consisting of244
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• (B1) a triangle uvw, where ex(u) = ex(w) = 2, ex(v) = 0, an extra-special uv-path P1, and a245

special vw-path P2, and246

• (B2) a triangle vwr, where ex(r) =∞, ex(w) = 1, ex(v) = 0, a vertex u adjacent to v where247

ex(u) = 2, an extra-special uv-path P1, and a special vw-path P2.248

u

P1

x

y
z

v

P2

w yx

P1

u

z

v

r
w

P2

(B1) (B2)

Dotted lines indicate special paths or extra-special paths. Vertices in X are filled with white.

Figure 5: Templates for reducible configurations.

We make some basic observations about special and extra-special paths that will be used to249

prove that these templates correspond to reducible configurations.250

Let P be a special uv-path or an extra-special uv-path. For every color a ∈ L(u), let guP (a) be251

the set containing each color b ∈ L(v) such that assigning c(u) = a and c(v) = b does not extend252

to an L-coloring of P . Since we can greedily color P starting at u until reaching v, there is at most253

one color in guP (a). Further, guP (a) 6= ∅ if and only if this greedy coloring process has exactly one254

choice for each vertex in P . Thus, if guP (a) = {b} then also gvP (b) = {a}.255

Since L is an (f, 2)-list assignment, adjacent vertices have at most two colors in common. Thus,256

there are at most two colors a1, a2 ∈ L(u) such that guP (ai) 6= ∅. Moreover, observe that if there257

are two distinct colors a1, a2 ∈ L(u) such that guP (ai) 6= ∅, then both a1 and a2 are in every list258

along P and hence {a1, a2} ⊆ L(v).259

If P is an extra-special uv-path with 3-cycle xyz where xy is in the path P , then after a color260

is assigned to z (as ex(z) =∞) either one of x or y has three colors available or |L(x) ∩ L(y)| ≤ 1.261

Therefore, if P is an extra-special uv-path, then there is at most one color a ∈ L(u) such that262

guP (a) 6= ∅.263

Lemma 3.11. All configurations matching the template (B1) are reducible.264

Proof. Let (C,X, ex) be a configuration matching the template (B1) and let L be an (f, 2)-list265

assignment.266

Let L(u) = {a1, a2}. Since P1 is an extra-special path, there is at least one i ∈ {1, 2} such that267

guP1
(ai) = ∅. Assign c(u) = ai, select c(w) ∈ L(w)\{ai} and c(v) ∈ L(v)\

(
{c(u), c(w)} ∪ gwP1

(c(w))
)
;268

the coloring extends to P1 and P2.269

Corollary 3.12. The configurations (C17), (C18), and (C19) match the template (B1), and hence270

they are reducible.271

Lemma 3.13. All configurations matching the template (B2) are reducible.272
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Proof. Let (C,X, ex) be a configuration matching the template (B2) and let L be an (f, 2)-list273

assignment. Let c(r) be the unique color in the list L(r). Let L(u) = {a1, a2}. Since P1 is an274

extra-special path, there is at least one i ∈ {1, 2} such that guP1
(ai) = ∅. Assign c(u) = ai.275

If c(r) /∈ L(v), then select c(w) ∈ L(w), and L(v) ∈ L(v) \
(
{c(u), c(w)} ∪ gwP2

(c(w))
)
; the276

coloring extends to P1 and P2.277

If c(r) ∈ L(v), then select c(w) ∈ L(w) \ L(v); observe c(w) 6= c(r). There exists a color278

c(v) ∈ L(v) \
(
{c(r), c(u)} ∪ gwP2

(c(w))
)
; the coloring extends to P1 and P2.279

Corollary 3.14. Using Lemma 3.2, the configurations (C20) and (C21) match the template (B2),280

and hence they are reducible.281

4 No Chorded 5-Cycle282

In this section we show the case of forbidding chorded 5-cycles from Theorem 1.7.283

Theorem 4.1. If G is a plane graph not containing a chorded 5-cycle, then G is (4, 2)-choosable.284

Proof. Let G be a counterexample minimizing n(G) among all plane graphs avoiding chorded 5-285

cycles with a (4, 2)-list assignment L such that G is not L-choosable. Observe that n(G) ≥ 4; in286

fact, δ(G) ≥ 4. Since G is a minimal counterexample, G does not contain any of the reducible287

configurations (C9)–(C21). If (C,X, ex) is a reducible configuration, then by Lemma 3.2 C does288

not appear as a subgraph of G where dG(x) ≤ dC(x) + ex(x) for all x ∈ V (C). Further, the289

configurations (C13)–(C21) are large enough that we must consider configurations that are formed290

by identifying certain pairs of vertices in these configurations. In Appendix A, we concretely check291

all vertex pairs that avoid creating a chorded 5-cycle and find that all resulting configurations are292

reducible.293

For each v ∈ V (G) and f ∈ F (G) define initial charges µ0(v) = d(v)−6 and µ0µ0(f) = 2`(f)−6.294

By Euler’s Formula, the sum of initial charges is −12. After charges are initially assigned, the295

only elements with negative initial charge are 4-vertices and 5-vertices. Since chorded 5-cycles296

are forbidden, there is no 3-fan in G and every 4-face is adjacent to only 4+-faces. The possible297

arrangements of 3-, 4+-, or 5+-faces incident to 4- and 5-vertices are shown in Figure 6.298

Sequentially apply the following discharging rules. Note that, for a vertex v and a face f , we299

define µi(v) and µi(f) to be the charge on v and f , respectively, after applying rule (Ri).300

(R1) Let v be a 4-vertex and f be a 4+-face incident to v. If f is adjacent to a 3-face that is also301

incident to v, then f sends charge 1 to v; otherwise, f sends charge 1
2 to v.302

(R2) Let v be a 5-vertex. If f is a 4+-face incident to v, then f sends charge 1
2 to v.303

A face f is a needy face if µ2(f) < 0; otherwise, f is non-needy.304

(R3) If v is a 5-vertex incident to a needy 5-face f , then v sends charge 1
2 to f .305

A vertex v is a needy vertex if µ3(v) < 0; otherwise, v is non-needy.306

(R4) If f is a non-needy 5+-face incident to a needy 5-vertex v, then f sends charge 1
2 to v.307
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v

(a) 4+ 4+ 4+ 4+ (b) 3 5+ 4+ 5+ (c) 3 3 5+ 5+ (d) 3 5+ 3 5+

(e) 4+ 4+ 4+ 4+ 4+ (f) 3 5+ 4+ 4+ 5+ (g) 3 5+ 3 5+ 5+ (h) 3 3 5+ 4+ 5+ (i) 3 3 5+ 3 5+

v v v

v v v v v

Figure 6: Possible cyclic arrangements of 3-, 4+-, and 5+-faces incident to 4- and 5-vertices

We show that µ4(v) ≥ 0 for each vertex v and µ4(f) ≥ 0 for each face f . Since the total charge308

was preserved during the discharging rules, this contradicts the negative charge sum from the initial309

charge values. We begin by considering the charge distribution after applying (R1) and (R2).310

Let v be a vertex. If v is a 4-vertex, then µ0(v) = −2 and v receives total charge at least 2 from311

its neighboring faces by (R1). Furthermore, v is not affected by any rules after (R1), so µ4(v) ≥ 0.312

If v is a 6+-vertex, then µ0(v) ≥ 0 and v is not affected by any other rules, so µ4(v) ≥ 0. If v is a313

5-vertex, then µ0(v) = −1 and v receives total charge at least 1 from its neighboring faces by (R2).314

Therefore, for any vertex v, µ2(v) ≥ 0.315

Let f be a face. If f is a 3-face, then µ0(f) = 0 and f is not affected by any rule, so µ4(f) = 0.316

If f is a 4-face, then µ0(f) = 2. In (R1) and (R2), the only faces that send charge 1 to a single317

vertex are adjacent to a 3-face. A 4-face adjacent to a 3-face is a chorded 5-cycle, which is forbidden318

by assumption, so f sends charge at most 1
2 to each vertex. Since 4-faces are not affected by rules319

(R3)–(R4), µ4(f) ≥ 0. If f is a 6+-face, then f has at least as much initial charge as it has incident320

vertices. If v is a 4-vertex incident to f , then f sends charge at most 1 to v by (R1) and does not321

send any charge to v by rules (R2)–(R4). If v is a 5-vertex incident to f , then f sends charge 1
2 to322

v by (R1), and possibly another charge 1
2 by (R4), and does not send charge to v by (R1) or (R3).323

Thus f sends charge at most 1 to each incident vertex, and µ4(f) ≥ 0.324

If f is a 5-face, then µ0(f) = 4 and f sends charge at most 1 to each incident vertex by (R1)325

and (R2). Observe that if µ2(f) = −1, then f is incident to five 4-vertices and f is adjacent to at326

least one 3-face; this forms (C9), a contradiction. Therefore, we have the following claim about the327

structure of a needy 5-vertex.328

Claim 4.2. If f is a needy 5-face, then µ2(f) = −1
2 and f is adjacent to exactly one 5-vertex.329

We now consider the charge distribution after applying (R3). If f is a needy 5-face, then330

µ2(f) = −1
2 and f is adjacent to exactly one 5-vertex, so µ3(f) = 0. No faces lose charge in (R3),331

therefore µ3(f) ≥ 0 for any face f .332

Claim 4.3. If v is a needy 5-vertex, then v is incident to three 3-faces, two 4+-faces, and exactly333

one needy 5-face; hence µ3(v) = −1
2 .334
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Proof. Suppose that v is a vertex such that µ3(v) < 0, and consider the cyclic arrangement of 3-335

and 4+-faces about v.336

Case 1: v is incident to at least four 4+-faces (Figures 6(e) and 6(f)). Since µ2(v) ≥ 1 and337

µ3(v) < 0, v is incident to at least three needy 5-faces. Hence two of the needy 5-faces are338

adjacent, forming (C13), a contradiction.339

Case 2: v is incident to two non-adjacent 3-faces and three 4+-faces (Figure 6(g)). Since µ2(v) = 1
2340

and µ3(v) < 0, v is incident to two needy 5-faces, f1 and f2. If these two faces are adjacent,341

then they form (C13), a contradiction. Otherwise, they share a 3-face t as a neighbor and all342

vertices incident to f1, f2, and t other than v are 4-vertices, so the vertices incident to f1 and t343

form (C10), a contradiction.344

Case 3: v is incident to two adjacent 3-faces and three 4+-faces (Figure 6(h)). Since µ2(v) = 1
2345

and µ3(v) < 0, v is incident to two needy 5-faces, f1 and f2. If f1 and f2 are adjacent then they346

form (C13), a contradiction. Thus, f1 and f2 are not adjacent, but they are each adjacent to347

a 3-face incident to v. Since fi is needy for each i ∈ {1, 2}, fi sent charge 1 to every 4-vertex348

incident to fi. By (R1), every 4-vertex incident to fi is incident to a 3-face adjacent to fi.349

Therefore, f1 is adjacent to a 3-face that does not share any vertices with the the two 3-faces350

incident to v, forming one of (C20) or (C21), a contradiction.351

Case 4: v is incident to three 3-faces and two 4+-faces (Figure 6(i)). If v is incident to two needy352

5-faces f1 and f2, then the 3-face t adjacent to both f1 and f2 is incident to two 4-vertices, and353

the vertices incident to f1 and t form (C10), a contradiction.354

Therefore, v is incident to exactly one needy 5-face, as claimed.355

By (R4), every needy 5-vertex receives charge 1
2 from its unique incident non-needy 5+-face, so356

µ4(v) ≥ 0 for every vertex v. Each needy 5-face has nonnegative charge after (R3), so if µ4(f) < 0357

for some 5-face f , then f sends charge by (R4), and thus is non-needy.358

ff1

t1 t2

t3

v1

v2
v3

v4

v5

(a) A 5-face f with µ4(f) < 0.

f

vi
vi+1

u

t

gi+1

a

gi

(b) Claim 4.5, Case 1.

f

vi
vi+1

t

u w

b

gi+1

gi

(c) Claim 4.5, Case 2.

Figure 7: Special cases for a 5-face f with µ4(f) < 0.

Consider the Figure 7(a), where f is a 5-face with µ4(f) < 0, f is incident to vertices v1, . . . , v5,359

v1 is a needy 5-vertex, and f1 is the needy 5-face incident to v1. Let t1 and t2 be the adjacent360
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pair of 3-faces incident to v1 with t1 adjacent to f1 and t2 adjacent to f ; let t3 be the other 3-face361

incident to v1. We make two basic claims about this arrangement.362

Claim 4.4. The vertex v2 adjacent to v1 and incident to t3 is a 5+-vertex.363

Proof. If v2 is a 4-vertex, then the vertices incident to f1 and t3 form (C10), a contradiction.364

Claim 4.5. If vi and vi+1 are consecutive vertices on the border of f , then at most one of vi and365

vi+1 is needy.366

Proof. Suppose that two consecutive vertices vi and vi+1 are needy 5-vertices. Let gi and gi+1 be367

the needy 5-faces incident to vi and vi+1, respectively. Since both vi and vi+1 have three incident368

3-faces, f is adjacent to a 3-face t across the edge vivi+1. Let u be the third vertex incident to t369

and consider two cases.370

Case 1: t is not in a diamond (Figure 7(b)). Since gi is needy, the vertex a adjacent to u and371

incident to gi (with a 6= vi) is a 4-vertex and is incident to a 3-face ti such that ti is adjacent to372

gi. The vertices incident to gi, gi+1, t, and ti form one of (C15) or (C19), a contradiction.373

Case 2: t is in a diamond (Figure 7(c)). Let w be the fourth vertex in the diamond and assume,374

without loss of generality, that vi is adjacent to w. Let b be the vertex incident to gi+1 that is375

not adjacent to u or vi+1 along the boundary of gi+1; since gi+1 is needy, there is a 3-face ti+1376

incident to b and adjacent to gi+1. The vertices vi and w and those incident to gi+1 and ti+1377

form one of (C17) or (C18), a contradiction.378

By Claim 4.5, f is incident to at most two needy vertices, and by Claim 4.4, v2 is non-needy. If379

f is incident to exactly one needy 5-vertex, then v3, v4, and v5 are 4-vertices since µ2(f) = 0, but380

then the vertices incident to f and f1 form (C14), a contradiction.381

Therefore, f is incident to two needy vertices, and since v2 is a 5+-vertex by Claim 4.4, f is382

incident to exactly two 4-vertices. Each of these receives charge 1, so µ4(f) = −1
2 . By Claim 4.5,383

the needy vertices incident to f consist of v1 and exactly one of v3 or v4. The needy 5-vertex vi384

other than v1 is also incident to three 3-faces t4, t5, and t6, where t4 and t5 form a diamond with t4385

adjacent to f . By Claim 4.4, the vertex adjacent to vi and incident to both f and t6 is a non-needy386

5+-vertex. The only non-needy 5+-vertex incident to f is v2, and hence v3 is a needy 5-vertex and387

t4 is incident to v4. If v2 is a 6+-vertex, then µ4(f) ≥ 0. Therefore, there is a unique arrangement of388

needy vertices, 4-vertices, and a 5-vertex about a 5-face f with µ4(f) < 0 (Figure 8). For i ∈ {1, 3},389

let fi be the needy 5-face incident to the needy 5-vertex vi.390

The vertices incident to f , f1, f3, t3, and t6 form (C16), so this arrangement does not appear391

within G; hence µ4(f) ≥ 0 for all 5-faces f . Therefore, every vertex and face has nonnegative392

charge after (R4), contradicting the negative initial charge sum. Thus, a minimal counterexample393

does not exist and every plane graph with no chorded 5-cycle is (4, 2)-choosable.394

5 No Chorded 6-Cycle395

In this section we show the case of forbidding chorded 6-cycles from Theorem 1.7.396

Theorem 5.1. If G is a plane graph not containing any chorded 6-cycle, then G is (4, 2)-choosable.397
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t2 t4

t5

t3 t6
f3f1

f

v2

v1 v3

v4v5

Figure 8: A non-needy 5-vertex v2 incident to a non-needy 5-face f with µ4(f) < 0.

We prove the following strengthened statement.398

Theorem 5.2. Let G be a plane graph with no chorded 6-cycle, and let P be a subgraph of G, where399

P is isomorphic to one of P1, P2, P3, or K3, and all vertices in V (P ) are incident to a common400

face f . Let L be a (4, 2)-list assignment of G− P and let c be a proper coloring of P . There exists401

an extension of c to a proper coloring of G such that c(v) ∈ L(v) for all v ∈ V (G− P ).402

Proof. Suppose that there exists a counterexample. Select a counterexample (G,P,L, c) by mini-403

mizing n(G) − 1
4n(P ) and subject to that by minimizing the number of edges among all chorded404

6-cycle free plane graphs, G, with a subgraph P isomorphic to a graph in {P1, P2, P3,K3}, a proper405

coloring c of P , and a (4, 2)-list assignment L of G−P such that c does not extend to an L-coloring406

of G. We will refer to the vertices of P as precolored vertices.407

Claim 5.3. G is 2-connected.408

Proof. If G is disconnected, then each connected component can be colored separately by the409

minimality of G. Suppose that G has a cut-vertex v. Then there exist connected subgraphs G1410

and G2 where G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}, n(G1) < n(G), and n(G2) < n(G). We411

can assume without loss of generality that G1 contains at least one vertex of P , so let S1 be the412

subgraph of P contained in G1. Let S2 = {v} ∪ (V (G2) ∩ V (P )).413

Since (G,P, L, c) is a minimal counterexample, there is an L-coloring c1 of G1 that extends the414

coloring on S1. Using the color prescribed by c1 on v, there exists an L-coloring c2 of G2 that415

extends the coloring on S2. The colorings c1 and c2 form an L-coloring of G, a contradiction.416

Claim 5.4. G has no separating 3-cycles.417

Proof. Suppose that P ′ = v1v2v3 is a separating 3-cycle of G. Let G1 be the subgraph of G given418

by the exterior of P ′ along with P ′, and let G2 be the subgraph of G given by the interior of P ′419

along with P ′. Since P ′ is separating, n(G1) < n(G) and n(G2) < n(G).420

Since the vertices in P share a common face, we can assume without loss of generality that421

V (P ) ⊆ V (G1). Since (G,P, L, c) is a minimal counterexample, there exists an L-coloring c1 of G1.422

Assign the colors from c1 to P ′. Then there exists an L-coloring of G2 extending the colors on P ′,423

and together c1 and c2 form an L-coloring of G, a contradiction.424

Claim 5.5. If v ∈ V (P ) such that V (P ) ⊆ N [v], then the subgraph of G induced by N(v) is not425

isomorphic to any graph in {P1, P2, P3,K3}.426
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Proof. Suppose that there exists a vertex v ∈ V (P ) where all precolored vertices are in N [v] and427

the subgraph G[N(v)] is isomorphic to a subgraph in {P1, P2, P3,K3}. Since |NG[v]| ≤ 4, there428

exists an L-coloring c′ of G[N [v]]. Since (G,P,L, c) is a minimal counterexample, c′ extends to an429

L-coloring of G′, which in turn extends to an L-coloring of G, a contradiction.430

Claim 5.6. If v ∈ V (P ) has dG(v) ≤ 2, then dG(v) = 2 and P is isomorphic to P1, P2, or P3.431

Proof. By Claim 5.3, dG(v) 6= 1. If dG(v) = 2 and P ∼= K3, then G[NG(v)] is isomorphic to P2,432

contradicting Claim 5.5.433

Claim 5.7. P is isomorphic to P3.434

Proof. Suppose that P is not isomorphic to either P3 or K3. If P is isomorphic to P1, then the435

vertex v of P has two distinct neighbors u1 and u2 that are on the same face as v; let U = {u1, u2}.436

If P is isomorphic to P2, then some vertex v in P has a neighbor u1 not in P that shares a face437

with the edge in P ; let U = {u1}. Let P ′ be induced by V (P ) ∪ V (U). Notice |P ′| = 3 hence it438

is isomorphic to P3 or K3. There exists a proper coloring c′ of P ′ that extends the coloring on P .439

But then (G,P ′, L, c′) has n(G)− 1
4n(P ′) < n(G)− 1

4n(P ), so there exists an L-coloring of G that440

extends c′, a contradiction.441

If P is isomorphic to K3, we can remove any edge e with both vertices in P . By minimality442

of G, there exists an L-coloring extending c in G − e but it is also an L-coloring of G since both443

endpoints of e have different color in c, a contradiction.444

Claim 5.8. If v ∈ V (G− P ), then dG(v) ≥ 4.445

Proof. Suppose that v ∈ V (G − P ) has degree d(v) ≤ 3. Then G − v is a planar graph with no446

chorded 7-cycle containing a precolored subgraph P and a list assignment L. Since (G,P, L, c) is a447

minimum counterexample, G − v has an L-coloring. However, v has at most three neighbors and448

at least four colors in the list L(v). Thus, there is an extension of the L-coloring of G − v to an449

L-coloring of G, a contradiction.450

Claim 5.4 helps us to prove the following adjacencies of faces.451

Claim 5.9. If a 5-face f5 is adjacent to a triangle face f3 then there is a 2-vertex incident to both452

of them. Moreover, every 5-face is adjacent to at most one triangle face.453

Proof. Let f5 be a 5-face bounded by a cycle v1, v2, v3, v4, v5. Let f3 be a 3-face with vertices v1v2x.454

Since G has no chorded 6-cycle, x ∈ {v3, v4, v5}. If x = v4, then Claim 5.4 implies v1v4v5 and455

v2v3v4 are also triangular faces and we obtain a contradiction with Claim 5.8 since G is a graph on456

5 vertices and only one 4+-vertex. By symmetry between v3 and v5 suppose that x = v3. Then v2457

is the desired 2-vertex and we are done.458

Suppose that f5 is adjacent to two triangle faces. Each of them has a 2-vertex in common with459

f5. By symmetry assume these 2-vertices are v3 and v5. Then v1v4 and v2v4 are edges and v1v2v4460

is a triangle face adjacent to f5 not sharing any 2-vertex with f5, which is a contradiction.461

Claim 5.10. If two 4-faces are adjacent then they are both incident to the same 2-vertex462

16



Proof. Let f1 and f2 be adjacent 4-faces bounded by cycles v1, v2, v3, v4 and v1, v2, x2, x1 respec-463

tively. Since G does not contain chorded 6-cycles, f1 and f2 must share at least 3 vertices. If they464

share four vertices, we get a contradiction with Claim 5.8. By symmetry we assume x1 is v3 or465

v4. If x1 = v3 then v2, x2, v3 and v1, v3, v4 are triangular faces and we obtain a contradiction with466

Claim 5.8. Hence x1 = v4 and v1 has degree two.467

Claim 5.11. If a 4-face f shares two or more edges with triangular faces, then it shares edges with468

exactly two. Moreover, there is a 3-vertex v ∈ V (P ) incident to both triangular faces and to f .469

Proof. Let f be a 4-face bounded by a cycle v1, v2, v3, v4 and assume that v1, v2, x is a triangular470

face. If x ∈ {v3, v4} then G would violate Claim 5.4 or Claim 5.8. Hence x is not a vertex of the471

cycle.472

Suppose for contradiction v3, v4, y is also a triangular face. Since G does not contain chorded473

6-cycles, x = y. By Claim 5.4, G has only 5 vertices and contradicts Claim 5.8. Hence f is adjacent474

to at most two triangles.475

Assume that v4, v1, y is a triangular face. Since G does not contain chorded 6-cycles, x = y.476

Then v1 is the desired 3-vertex since by Claim 5.8, v1 ∈ V (P ).477

Claim 5.12. Every 3-vertex is adjacent to at most two triangular faces.478

Proof. Let v be a 3-vertex adjacent to three triangular faces. Note that these are all the faces479

containing v. This contradicts that P = P3.480

Since G is a minimal counterexample, G does not contain any of the reducible configurations.481

Specifically, we use the fact that G avoids (C3) and (C4) (see Figure 2), where no removed vertex482

is precolored.483

For each v ∈ V (G) − V (P ), p ∈ V (P ), and f ∈ F (G) define initial charge µ0(v) = d(v) − 4,484

µ0(p) = d(p) − 4 + 22
9 and µ0(f) = `(f) − 4. By Euler’s Formula, the initial charge sum is485

−8 + 22
3 = −2

3 . Since δ(G − P ) ≥ 4, the only elements of negative charge are 3-faces. Since a486

chorded 6-cycle is forbidden, δ(G−P ) ≥ 4, and Claim 5.4, the clusters (see Figure 1) are triangles487

(K3), diamonds (K4), 3-fans (K5a), 4-wheels (K5b), and 4-fans with end vertices identified (K5c).488

Specifically note that the 4-fan (K6b) contains a chorded 6-cycle, so at most three 3-faces in a489

cluster share a common vertex, unless they form a 4-wheel (K5b) and the common vertex is the490

4-vertex in the center of the wheel.491

Apply the following discharging rules, as shown in Figure 9.492

(R1) If p is a 2-vertex incident with two 4-faces, then p sends charge 2
9 to each of them.493

(R2) If f is a 3-face and e is an incident edge, then let g be the face adjacent to f across e.494

(R2a) If g is a 5+-face, then f pulls charge 1
3 from g “through” the edge e.495

(R2b) If g is a 4-face adjacent to one 3-face, then let e1, e2, and e3 be the other edges incident to496

g. For each i ∈ {1, 2, 3}, let hi be the face adjacent to g across ei. For each i ∈ {1, 2, 3},497

the face f pulls charge 1
9 from the face hi “through” the edges e and ei.498

(R2c) If g is a 4-face adjacent to two 3-faces, then let e1 and e2 be edges of g not incident to499

3-faces. For each i ∈ {1, 2}, let hi be the face adjacent to g across ei. For each i ∈ {1, 2},500

the face f pulls charge 1
18 from the face hi “through” the edges e and ei. Let v be the501

vertex shared by g, f and the other 3-face. Then v send charge 2
9 to f through e.502
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(R3) Let v be a 5+-vertex or precolored, and let f be an incident 3-face.503

(R3a) If v is a 5-vertex that is not precolored , then v sends charge 1
3 to f .504

(R3b) If v is a 6+-vertex or precolored, then v sends charge 4
9 to f .505

(R4) If X is a cluster, then every 3-face in X is assigned the average charge of all 3-faces in X.506

Notice that precolored vertices behave similarly to 6+-vertices.507

1
3

f

g

e

1
9

1
9

1
9

f

g

e

h1

e1

h2

e2
h3

e3

v

1
3

f

v

4
9

f

(R2a) (R2b) (R3a) (R3b)

p
2
9

2
9

(R1)

g
f

v

1
18

1
18 2

9

(R2c)

Figure 9: Discharging rules in the proof of Theorem 5.1.

Notice that the rules preserve the sum of the charges. Let µi(v) and µi(f) denote the charge508

on a vertex v or a face f after rule (Ri). We claim that µ4(v) ≥ 0 for every vertex v and µ4(f) ≥ 0509

for every face f ; since the total charge sum is preserved by the discharging rules, this contradicts510

the negative charge sum from the initial charge values.511

If v is a 6+-vertex, then by (R3b) v loses charge 4
9 to each incident 3-face. Since G avoids512

chorded 6-cycles, v is incident to at most b34d(v)c 3-faces. Thus µ4(v) satisfies513

µ4(v) ≥ d(v)− 4− 4

9

⌊
3

4
d(v)

⌋
≥ d(v)− 4− 4

9
· 3

4
d(v) =

2

3
d(v)− 4 ≥ 0.514

Let v be a 5−-vertex not in P . If v is a 4-vertex, then v is not involved in any rule, so the515

resulting charge is 0. If v is a 5-vertex, then by (R3a) v loses charge 1
3 to each incident 3-face.516
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Since G avoids chorded 6-cycles, v is incident to at most three 3-faces, so517

µ4(v) ≥ d(v)− 4− 1

3
· 3 = d(v)− 5 = 0.518

Therefore, µ4(v) ≥ 0 for every vertex v not in P .519

Let v be a 5−-vertex in P . If v is a 5-vertex or 4-vertex then rule (R3b) applies at most d(v)520

times and521

µ4(v) ≥ d(v)− 4 +
22

9
− 4

9
· d(v) > 0.522

If v is a 3-vertex then by Claim 5.12 (R2c) and (R3b) apply at most twice and523

µ4(v) ≥ d(v)− 4 +
22

9
− 6

9
· 2 > 0.524

If v is a 2-vertex, then at most one of (R1) and (R3b) apply and if (R3b) applies, it applies only525

once. Hence526

µ4(v) ≥ d(v)− 4 +
22

9
− 4

9
= 0.527

Therefore all vertices v ∈ V (G) have µ4(v) ≥ 0.528

Let f be a 4-face. If (R2b) or (R2c) applies to f then it must be adjacent to another 4-face and529

by Claim 5.10 and they share a 2-vertex v. Hence (R1) applies to f and v and the charge lost in530

(R2b) and (R2c) is at most the charge gained in (R1). Thus, µ4(f) ≥ 0 for every 4-face f .531

If f is a 6+-face, then f loses charge at most 1
3 through each edge by (R2a), (R2b), or (R2c), so532

µ4(f) ≥ `(f)− 4− 1

3
`(f) =

2

3
`(f)− 4 ≥ 0.533

Therefore, µ4(f) ≥ 0 for every 6+-face f .534

Let f be a 5-face. If f is not adjacent to a 3-face, f loses no charge by (R2a), but could lose535

charge using (R2b) and (R2c), so536

µ4(f) ≥ `(f)− 4− 1

9
`(f) =

8

9
`(f)− 4 ≥ 0.537

If f is adjacent to a 3-face, by Claim 5.9 it is adjacent to at most one and it shares at most two538

edges with it, so (R2a) is applies at most twice while at most 1
9 charge is lost through each of the539

remaining three edges by (R2b) and (R2c) and we obtain540

µ4(f) ≥ `(f)− 4− 1

9
· 3− 1

3
· 2 = 0.541

Therefore, µ4(f) ≥ 0 if f is a 5-face.542

All objects that start with nonnegative charge have nonnegative charge after the discharging543

process. It remains to show that each cluster of 3-faces receives enough charge to result in a544

nonnegative charge sum. Observe that the rules (R2a), (R2b), and (R2c) guarantee that if a545

triangle f is sharing an edge e with a 4+-face, then f receives total charge 1
3 trough e.546

Case 1: (K3) Let f be an isolated 3-face. The three adjacent faces g1, g2, and g3 are all 4+-faces.547

By (R2), f receives charge 1
3 through each incident edge, so µ4(f) = −1 + 3 · 13 = 0.548
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Case 2: (K4) Let f1 and f2 be 3-faces in a diamond cluster (K4). Then f1 is adjacent to two 4+-549

faces g1 and g2, and f2 is adjacent to two 4+-faces h1 and h2. By (R2), the cluster receives charge550

1
3 through each of the four edges on the boundary of the diamond. Since µ0(f1) + µ0(f2) = −2,551

the charge value on the diamond after rule (R2) is −2
3 . Since G contains no (C3), there is a552

5+-vertex v incident to both f1 and f2. If v is a 5-vertex, then by (R3a), f1 and f2 each receive553

charge 1
3 , and the resulting charge on the diamond is zero. If v is a 6+-vertex, then by (R3b),554

f1 and f2 each receive charge 4
9 , and the resulting charge on the diamond is positive.555

Case 3: (K5a) Let f1, f2, and f3 be 3-faces in a 3-fan cluster (K5a), where f2 is adjacent to both556

f1 and f3. The initial charge on this cluster is −3. There are five edges on the boundary of this557

cluster, so by (R2) the cluster receives charge 5
3 , resulting in charge −4

3 after (R2). Note that558

the face f2 is adjacent to both f1 and f3. Since G contains no (C3), there exists a 5+-vertex v559

incident to both f1 and f2, and there exists a 5+-vertex u incident to both f2 and f3. If v 6= u,560

then by (R3) v sends charge at least 1
3 to each of f1 and f2 and u sends charge at least 1

3 to each561

of f2 and f3, resulting in a nonnegative charge on the 3-fan. If v = u and v is a 6+-vertex, then562

by (R3b) v sends charge 4
9 to each face f1, f2, and f3, resulting in a nonnegative charge on the563

3-fan. Otherwise, suppose that v = u and v is a 5-vertex. Since G contains no (C4), there exists564

another 5+-vertex w incident to at least one of f1 and f2. By (R3a) v sends charge 1
3 to each of565

f1, f2, and f3, and by (R3) w sends charge at least 1
3 to at least one of f1 and f2, resulting in a566

nonnegative charge on the 3-fan.567

Case 4: (K5b) Let f1, f2, f3, and f4 be 3-faces in a 4-wheel (K5b). The initial charge on this568

cluster is −4. There are four edges on the boundary of this cluster, so by (R2) the cluster receives569

charge 4
3 , resulting in charge −8

3 after (R2). Let v be the 4-vertex incident to all four 3-faces.570

Let u1, u2, u3, and u4 be the vertices adjacent to v, ordered cyclically such that vuiui+1 is the571

boundary of the 3-face fi for i ∈ {1, 2, 3} and vu4u1 is the boundary of f4. Since G contains572

no (C3) and d(v) = 4, each ui is a 5+-vertex. By (R3), each ui sends charge at least 2
3 to the573

cluster, resulting in a nonnegative total charge.574

Case 5: (K5c) Let f1, f2, f3, and f4 be 3-faces in a 4-strip with identified vertices as in (K5c). The575

initial charge on this cluster is −4. Let v, u1, u2, u3, and u4 be the vertices in the 4-strip, where576

v is incident to only f1 and f4, u1 is incident to only f1 and f2, u2 is incident to f2, f3, and f4,577

u3 is incident to f1, f2, and f3, and u4 is incident to only f3 and f4. There are six edges on the578

boundary of this cluster, so by (R2) the cluster receives charge 6
3 , resulting in charge −6

3 = −2579

after (R2).580

Since f2 and f3 form a diamond, and G contains no (C3), one of u2 and u3 is a 5+-vertex.581

Without loss of generality, assume u3 is a 5+-vertex. Since f3 and f4 form a diamond, and582

G contains no (C3), one of u2 and u4 is a 5+-vertex. If u2 is a 5+-vertex, then by (R3), the583

cluster receives charge at least 3
3 + 3

3 from u2 and u3, which results in nonnegative total charge.584

Otherwise, u2 is a 4-vertex and u4 is 5+-vertex. If u3 is a 6+-vertex, then by (R3), the cluster585

receives charge at least 4
3 + 2

3 from u3 and u4. If u3 is a 5-vertex, then since f1 and f2 form a586

diamond and G contains no (C4), one of v and u1 is a 5+-vertex. By (R3), the cluster receives587

charge at least 3
3 + 2

3 + 2
3 from u3 and u4 and one of v and u1. In either case, the final charge is588

nonnegative.589

We have verified that the total charge after discharging is nonnegative, contradicting the neg-590

ative initial charge sum. Thus, a minimal counterexample does not exist and every planar graph591
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with no chorded 6-cycle is (4, 2)-choosable.592

6 No Chorded 7-Cycle593

Theorem 6.1. If G is a plane graph not containing a chorded 7-cycle, then G is (4, 2)-choosable.594

We prove the following strengthened statement:595

Theorem 6.2. Let G be a plane graph with no chorded 7-cycle, and let P be a subgraph of G, where596

P is isomorphic to one of P1, P2, P3, or K3, and all vertices in V (P ) are incident to a common597

face f . Let L be a (4, 2)-list assignment of G− P and let c be a proper coloring of P . There exists598

an extension of c to a proper coloring of G such that c(v) ∈ L(v) for all v ∈ V (G− P ).599

Proof. Suppose that there exists a counterexample. Select a counterexample (G,P,L, c) by mini-600

mizing n(G)− 1
4n(P ) among all chorded 7-cycle free plane graphs, G, with a subgraph P isomorphic601

to a graph in {P1, P2, P3,K3}, a proper coloring c of P , and a (4, 2)-list assignment L of G − P602

such that c does not extend to an L-coloring of G. We will refer to the vertices of P as precolored603

vertices.604

Claim 6.3. G is 2-connected.605

Proof. If G is disconnected, then each connected component can be colored separately. Suppose606

that G has a cut-vertex v. Then there exist connected subgraphs G1 and G2 where G = G1 ∪ G2607

and V (G1) ∩ V (G2) = {v}, n(G1) < n(G), and n(G2) < n(G). We can assume without loss of608

generality that G1 contains at least one vertex of P , so let S1 be the subgraph of P contained in609

G1. Let S2 = {v} ∪ (V (G2) ∩ V (P )).610

Since (G,P,L, c) is a minimal counterexample, there is an L-coloring c1 of G1 that extends the611

coloring on S1. Using the color prescribed by c1 on v, there exists an L-coloring c2 of G2 that612

extends the coloring on S2. The colorings c1 and c2 form an L-coloring of G, a contradiction.613

Claim 6.4. G has no separating 3-cycles.614

Proof. Suppose that P ′ = v1v2v3 is a separating 3-cycle of G. Let G1 be the subgraph of G given615

by the exterior of P ′ along with P ′, and let G2 be the subgraph of G given by the interior of P ′616

along with P ′. Since P ′ is separating, n(G1) < n(G) and n(G2) < n(G).617

Since the vertices in P share a common face, we can assume without loss of generality that618

V (P ) ⊆ V (G1). Since (G,P, L, c) is a minimal counterexample, there exists an L-coloring c1 of G1.619

Assign the colors from c1 to P ′. Then there exists an L-coloring of G2 extending the colors on P ′,620

and together c1 and c2 form an L-coloring of G, a contradiction.621

Claim 6.5. If v ∈ V (P ) such that V (P ) ⊆ N [v], then the subgraph of G induced by N(v) is not622

isomorphic to any graph in {P1, P2, P3,K3}.623

Proof. Suppose that there exists a vertex v ∈ V (P ) where all precolored vertices are in N [v] and624

the subgraph G[N(v)] is isomorphic to a subgraph in {P1, P2, P3,K3}. Then consider the graph625

G′ = G − v. Since |NG[v]| ≤ 4, there exists an L-coloring c′ of G[N [v]]. Since (G,P, L, c) is a626

minimal counterexample, c′ extends to an L-coloring of G′, which in turn extends to an L-coloring627

of G, a contradiction.628
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Claim 6.6. If v ∈ V (P ) has dG(v) ≤ 2, then dG(v) = 2 and P is isomorphic to P1, P2, or P3.629

Proof. By Claim 6.3, dG(v) 6= 1. If dG(v) = 2 and P ∼= K3, then G[NG(v)] is isomorphic to P2,630

contradicting Claim 6.5.631

Claim 6.7. P is isomorphic to one of P3 or K3.632

Proof. Suppose that P is not isomorphic to either P3 or K3. If P is isomorphic to P1, then the633

vertex p of P has two neighbors u1 and u2 that are on the same face as p; let U = {u1, u2}. If P is634

isomorphic to P2, then some vertex v in P has a neighbor u1 not in P that shares a face with the635

edge in P ; let U = {u1}. Let P ′ be induced by V (P )∪V (U). Notice |P ′| = 3 hence it is isomorphic636

to P3 or K3. There exists a proper coloring c′ of P ′ that extends the coloring on P . But then637

(G,P ′, L, c′) has n(G) − 1
4n(P ′) < n(G) − 1

4n(P ), so there exists an L-coloring of G that extends638

c′, a contradiction.639

Claim 6.8. If v ∈ V (G− P ), then dG(v) ≥ 4.640

Proof. Suppose that v ∈ V (G − P ) has degree d(v) ≤ 3. Then G − v is a planar graph with no641

chorded 7-cycle containing a precolored subgraph P and a list assignment L. Since (G,P, L, c) is a642

minimum counterexample, G − v has an L-coloring. However, v has at most three neighbors and643

at least four colors in the list L(v). Thus, there is an extension of the L-coloring of G − v to an644

L-coloring of G, a contradiction.645

Observe that n(G) ≥ 4. Recall that in a configuration (C,X, ex), an L-coloring of V (C) \ X646

extends to all of C. Because of this fact, if G contains a reducible configuration (C,X, ex), then647

there is a precolored vertex in the set X, or else G−X has an L-coloring that extends to all of G.648

Specifically, we will use the fact that G avoids (C2), (C3), (C4), (C5), (C6), (C7), and (C8).649

For each v ∈ V (G) and f ∈ F (G) define650

µ0(v) = d(v)− 4 + 2δ(v) and µ0(f) = `(f)− 4 + ε(f),651

where δ(v) ∈ {0, 1} has value 1 if and only if v ∈ V (P ), and ε(f) ∈ {0, 1} has value 1 if and only652

if the boundary of f is the set of precolored vertices, V (P ). By Euler’s Formula, the initial charge653

sum is at most −1. Claims 6.6 and 6.8 assert that the only negatively-charged objects are 3-faces.654

For a vertex v, let tk(v) denote the number of k-faces incident to v. Apply the following655

discharging rules. Let µi(v) and µi(f) denote the charge on a vertex v or a face f after rule (Ri).656

(R0) If v is a precolored vertex and f is an incident 3-face with negative initial charge, then v657

sends charge 1
2 to f .658

(R1) If f is a 3-face and e is an incident edge, then let g be the face adjacent to f across e.659

(R1a) If g is a 5+-face, then f pulls charge 3
8 from g “through” the edge e.660

(R1b) If g is a 4-face and f is the only 3-face adjacent to g, then let e1, e2, and e3 be the other661

edges incident to g. For each i ∈ {1, 2, 3}, let hi be the face adjacent to g across ei. For662

each i ∈ {1, 2, 3}, the face f pulls charge 1
8 from the face hi “through” the edges e and663

ei.664
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Figure 10: Discharging rules (R1) and (R2) in the proof of Theorem 6.1.

(R1c) If g is a 4-face and g is adjacent to two 3-faces f1 and f2 (say f1 = f), then let e1 and665

e2 be the other edges incident to g, where the faces h1 and h2 sharing these edges are666

6+-faces. For each i ∈ {1, 2}, the face f pulls charge 3
16 from the face hi “through” the667

edges e and ei.668

(R2) Let v be a 5+-vertex with v /∈ V (P ) and let f be an incident 3-face.669

(R2a) If v is a 5-vertex, then v sends charge 1
a to f , when a = max{3, t3(v)}.670

(R2b) If v is a 6+-vertex, then v sends charge 1
2 to f .671

(R3) If f is a 6-face with µ2(f) < 0 and v is an incident 5+-vertex or an incident vertex in V (P )672

with µ0(v) > 0, then v sends charge 1
4 to f .673

We claim that µ3(v) ≥ 0 for every vertex v and µ3(f) ≥ 0 for every face f . Since the total674

charge sum was preserved during the discharging rules, this contradicts the negative charge sum675

from the initial charge values.676

Note that 6-faces are not incident to 3-faces since G does not contain a chorded 7-cycle and677

separating 3-cycles. Observe that a 6-face f has µ1(f) < 0 if and only if all faces adjacent to f are678

4-faces, and each of those 4-faces has two adjacent 3-faces.679

Claim 6.9. Let v be a vertex in V (P ). Then µ3(v) ≥ 0. In addition, if v is incident to a 6-face f680

with µ1(f) < 0, then µ0(v) > 0.681

Proof. By Claims 6.6 and 6.7, we have µ0(v) = d(v)− 2 ≥ 0. Note that if µ0(v) ≥ 1
2 t3(v) + 1

4 t6(v),682

then the final charge µ3(v) is nonnegative. Since d(v) ≥ t3(v) + t6(v), it suffices to show that683

µ0(v) ≥ 1
4d(v) + 1

4 t3(v).684
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Case 1: P ∼= P3. Let v1, v2, and v3 be the vertices in the 3-path P . For i ∈ {1, 2, 3}, µ0(vi) =685

d(vi) − 2. Since P is not isomorphic to K3, these vertices do not form a cycle, and the face686

to which all vertices are incident is not a 3-face. Hence t3(vi) ≤ d(vi) − 1. If d(vi) ≥ 4, then687

µ0(vi) = d(vi)− 2 ≥ 1
2d(vi) >

1
4d(vi) + 1

4 t3(vi).688

If d(v2) = 2, then µ0(vi) = 0. Vertex v2 is not incident to any 3-faces since v1 and v3 are not689

adjacent. Moreover, v2 is not incident to any 6-face f with µ1(f) < 0. If such face f existed,690

v2 would be incident also to a 4-face f ′ that is incident to two triangles. This configuration of691

faces results in a separating triangle, chorded 7-cycle or contradiction with Claim 6.8.692

If d(vi) = 2 for i ∈ {1, 3}, then µ0(vi) = 0. If vi is adjacent to a 3-face, then let v′i be the693

neighbor of vi not in V (P ). Let P ′ be the subgraph induced by (V (P )∪{v′i})\{vi}, which forms694

a copy of P3 or K3 in G− vi. For any color c(v′i) ∈ L(v′i) \ {c(vi)}, there exists an L-coloring of695

G− vi as (G− vi, P ′, L, c) is not a counterexample; this coloring extends to an L-coloring of G.696

Thus, t3(vi) = 0. If vi is incident to a 6-face f with µ1(f) < 0, then the other face incident to697

vi is a 4-face that is adjacent to two 3-faces. This results in a chorded 7-cycle, a contradiction;698

thus (R3) does not apply to vi.699

If d(vi) = 3, Claim 6.4 asserts that G has no separating 3-cycles, so then vi loses charge at most700

1 in (R0). If vi is incident to a 6-face f with µ1(f) < 0, then the other two faces incident to vi701

are 4-faces and these 4-faces are each adjacent to two 3-faces. This creates a chorded 7-cycle, a702

contradiction, so (R3) does not apply to vi and µ3(vi) ≥ 0.703

Case 2: P ∼= K3. Let v1, v2, and v3 be the vertices in the 3-cycle P , so µ0(vi) = d(vi)−2 for each vi.704

By Claim 6.4, G has no separating 3-cycle, so the three vertices are incident to a common 3-face705

f with µ0(f) = 0. Therefore, each vertex vi sends charge 1
2 to at most d(vi)− 1 incident 3-faces706

by (R0). Recall that d(vi) ≥ 3 by Claim 6.6. Suppose that d(vi) = 3. If t3(vi) > 1, the subgraph707

of G induced by the neighborhood of vi is isomorphic to P3 or K3, contradicting Claim 6.5. If708

d(vi) ≥ 4, then µ0(vi) = d(vi)− 2 ≥ 1
2d(vi) ≥ 1

4d(vi) + 1
4 t3(vi). Therefore, µ3(vi) ≥ 0.709

Thus, in all cases a precolored vertex v has µ3(v) ≥ 0.710

We will now show that all objects that start with nonnegative charge also end with nonnegative711

charge.712

If f is a 4-face, then (R1b) and (R1c) do not pull charge from f , since this would require f713

to be adjacent to a 4-face g that is adjacent to a 3-face t, but then f , g, and t contain a chorded714

7-cycle. Thus, µ3(f) = 0 for every 4-face f .715

If f is a 5-face, then since G contains no chorded 7-cycles, f is not adjacent to two 3-faces and716

f is not adjacent to a 4-face. Therefore, f loses charge at most 3
8 by (R1a), but loses no charge717

using (R1b), so µ3(f) > 0 for every 5-face f .718

If f is a 6-face, then f is not adjacent to a 3-face since G contains no chorded 7-cycle. Observe719

that by Claim 6.3 the boundary of f is a simple 6-cycle. So if f sends charge through an edge e720

during (R1), it can send charge 1
8 through e by (R1b), or it can send charge 3

8 through e by (R1c).721

The only way that this will result in a negative charge after (R1) and (R2) is for f to send charge 3
8722

through each of its six edges by (R1c); this will cause µ2(f) = 2− 6 · 38 = −1
4 . If f has a precolored723

vertex v on its boundary, then by Claim 6.9, v has positive charge after (R0); by (R3), f receives724

charge at least 1
4 , resulting in µ3(f) ≥ 0. If f has no incident precolored vertices, then since G725

contains no (C2), some vertex v on the boundary of f is a 5+-vertex. By (R3) v sends charge 1
4 to726
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f and hence µ3(f) ≥ 0. Observe the following claim concerning the structure about a vertex that727

loses charge by (R3).728

Claim 6.10. Let v be a 5+-vertex with the three incident faces f1, f2, and f3, in cyclic order. If729

v sends charge to f2 by (R3), then f1 and f3 are 4-faces and f2 is a 6-face.730

If f is a 7+-face, then by (R1) f loses charge at most 3
8 through each edge. Thus,731

µ3(f) ≥ `(f)− 4− 3

8
`(f) =

5

8
`(f)− 4 > 0.732

Therefore, µ3(f) > 0 for every 7+-face f .733

Next, we will consider a vertex v not in V (P ).734

If v is a 4-vertex, then v does not lose charge by any rule, so the resulting charge is 0.735

If v is a 5-vertex, let a = max{3, t3(v)} and v loses charge 1
a t3(v) to incident 3-faces by (R2a).736

If (R3) does not apply to v, then v sends charge at most 1 to incident 3-faces and µ3(v) ≥ 0. If737

(R3) applies to v, then v is incident to faces f1, f2, and f3 where f1 and f3 are 4-faces and f2 is a738

6-face. Since d(v) = 5 and G has no chorded 7-cycle, the rule (R3) applies at most once. Indeed, if739

(R3) would apply twice, then v would be incident to two 4-faces sharing an edge and each of these740

two 4-faces shares two edges with triangles and this gives a chorded 7-cycle. If (R3) applies once,741

then t3(v) ≤ 2 and v loses charge at most 2
3 by (R2) and charge 1

4 by (R3), so µ3(v) ≥ 0.742

If v is a 6+-vertex, then let k = t3(v) and ` be the number of times (R3) applies to v. Notice743

that k ≤ b45d(v)c since G avoids chorded 7-cycles. Further, notice that k + 2` ≤ d(v), since each744

6-face that gains charge from v by (R3) is preceded by a 4-face in the cyclic order of faces around745

v. By (R2b), v can lose charge 1
2 to each incident 3-face, and v can lose charge at most 1

4 to each746

incident 6-face by (R3). Then v ends with charge747

µ3(v) ≥ d(v)− 4− 1

2
k − 1

4
`.748

If d(v) = 6, then observe k + ` ≤ 4 and hence µ3(v) ≥ 0. If d(v) = d ≥ 7, then d, k, and ` satisfy749

the following linear program with dual on variables a1, a2, and a3:750

min d − 1
2k − 1

4`
s.t. d ≥ 7

4d − 5k ≥ 0
d − k − 2` ≥ 0
d, k, ` ≥ 0

max 7a1
s.t. a1 + 5a2 + a3 ≤ 1

− 5a2 − a3 ≤ −1
2

− 2a3 ≤ −1
4

a1, a2, a3 ≥ 0

751

The dual-feasible solution (a1, a2, a3) =
(
23
40 ,

1
20 ,

1
4

)
demonstrates that d− 1

2k−
1
4` ≥ 7 · 2340 > 4, and752

thus µ3(v) > 0 for every 7+-vertex.753

It remains to be shown that the clusters receive enough charge to become nonnegative. Since G754

contains no separating 3-cycle, G does not contain the cluster (K5c) or the clusters (K6g)–(K6r).755

Observe that there is no precolored vertex v of degree at most three where all faces incident to756

v have length three. Finally, it is worth noting again that if G contains a reducible configuration757

(C,X, ex), then there is a precolored vertex in the set X.758

If a vertex v is a 5+-vertex or v ∈ V (P ), we say v is full ; if v is a 6+-vertex or v ∈ V (P ), then759

v is heavy. Note that a heavy vertex v sends charge 1
2 to each incident negatively-charged 3-face760

by (R0) or (R2b). If P ∼= K3, we call P the precolored face.761

25



f

v

f1
f2 f1

f2
f3

(K3) (K4) (K5a)

Figure 11: Clusters (K3), (K4), and (K5a)

Case 1: (K3) Let f be the isolated 3-face in (K3). If f is the precolored face, then µ3(f) = µ0(f) =762

0. Otherwise, the initial charge on f is −1. By (R1), f receives charge 9
8 through its boundary763

edges, resulting in a nonnegative final charge.764

Case 2: (K4) Let f1 and f2 be 3-faces in a diamond cluster (K4). First, suppose without loss of765

generality that f1 is the precolored face. The initial charge of the cluster is −1. Then f2 receives766

charge 1 by (R0) and charge 2 · 38 by (R1), resulting in a positive final charge. Otherwise, the767

initial charge on the cluster is −2. By (R1), f1 and f2 receive charge 3
8 through each of the two768

edges on the boundary of the cluster, resulting in charge −1
2 . If the cluster contains a precolored769

vertex u, then it receives charge 1
2 by (R0). Otherwise, since G contains no (C3), there is a 5+770

-vertex v incident to both f1 and f2. By (R2), this vertex sends charge at least 1
3 to each of the771

faces, resulting in a nonnegative final charge.772

Case 3: (K5a) Let f1, f2, and f3 be 3-faces in a 3-fan cluster (K5a), where f2 is adjacent to both f1773

and f3. Suppose that the cluster contains a precolored face, so the initial charge on the cluster774

is −2. If f2 is precolored, then the cluster receives charge 4 · 12 by (R0); if f1 or f3 is precolored,775

then the cluster receives charge 3 · 12 by (R0) and charge 3 · 38 by (R1). In either case, the final776

charge is nonnegative.777

If P 6∼= K3 or the cluster does not contain the precolored face, then the initial charge on the778

cluster is −3. By (R1), the cluster receives charge 5 · 38 , resulting in charge −9
8 . Note that the779

faces f1 and f2 form a diamond and the faces f2 and f3 form a diamond. Since G contains no780

(C3), there exists a full vertex v incident to both f1 and f2. Similarly, there exists a full vertex781

u incident to f2 and f3. If u 6= v, then by (R0) or (R2), v sends charge at least 1
3 to each of f1782

and f2 and u sends charge at least 1
3 to each of f2 and f3, resulting in nonnegative charge on783

the cluster. If u = v and v is a heavy vertex, then v sends charge 1
2 to each face f1, f2, and f3,784

resulting in nonnegative charge on the cluster. Otherwise, suppose that u = v /∈ V (P ) and v is785

a 5-vertex. Since G contains no (C4), there exists another full vertex w that is incident to at786

least one of f1 and f2. By (R2a), v sends charge 1
3 to f1, f2, and f3, and by (R0) or (R2), w787

sends charge at least 1
3 to one of f1 and f2, resulting in nonnegative charge on the cluster.788

v

u2u1

u4 u3

f1
f2

f3

f4 f1
f2
f3

f4
v u5

u4u3

u2

u1

f1

f2
f3
f4

(K5b) (K6a) (K6b)

Figure 12: Clusters (K5b), (K6a), and (K6b)
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Case 4: (K5b) Let f1, f2, f3, and f4 be 3-faces in a 4-wheel (K5b). If the cluster contains a789

precolored face, then the initial charge on the cluster is −3; the cluster receives charge 5 · 12 by790

(R0) and charge 3 · 38 by (R1), resulting in a positive final charge. Otherwise, the initial charge791

on this cluster is −4. By (R1), the cluster receives charge 4 · 38 , resulting in charge −5
2 . Let v792

be the 4-vertex incident to all four 3-faces. Let u1, u2, u3, and u4 be the vertices adjacent to v,793

ordered cyclically such that vuiui+1 is the boundary of the 3-face fi for i ∈ {1, 2, 3} and vu4u1 is794

the boundary of f4. Since the cluster does not contain the precolored face, v is not a precolored795

vertex. Since G contains no (C3), each ui is a full vertex. When ui is a 5-vertex, it is incident to796

two 7+-faces, so ui sends charge 1
3 to each incident 3-face by (R2). Thus, each ui sends charge797

at least 2 · 13 to the cluster by (R0) or (R2), resulting in a nonnegative final charge.798

Case 5: (K6a) Let f1, f2, f3, and f4 be 3-faces in a 4-strip cluster (K6a). If the cluster contains799

the precolored face, then the initial charge on the cluster is −3. If f1 or f4 is precolored, then800

the cluster receives charge 3 · 12 by (R0) and charge 4 · 38 by (R1); if f2 or f3 is precolored, then801

the cluster receives charge 5 · 12 by (R0) and charge 5 · 38 by (R1). In either case, the resulting802

final charge is nonnegative. If the cluster does not contain the precolored face, then the initial803

charge on this cluster is −4. By (R1), the cluster receives charge 6 · 38 , resulting in charge −7
4 .804

Note that for i ∈ {1, 2, 3}, the faces fi and fi+1 form a diamond. Since G contains no (C3),805

there exists a full vertex v incident to both fi and fi+1. Let u1 be a full vertex incident to f2806

and f3. Without loss of generality, u1 is not incident to f4, so there is a full vertex u2 incident807

to f1 and f2. If u1 is a heavy vertex, the cluster receives charge 3 · 12 from u1 by (R0) or (R2b),808

and charge at least 2 · 13 from u2 by (R0) or (R2), resulting in a positive final charge. Otherwise,809

u1 is a 5-vertex, so u1 sends charge 3 · 13 by (R2a), resulting in charge −3
4 . If u2 is incident810

to f3, then u2 sends charge at least 3 · 13 by (R0) or (R2), resulting in a positive final charge.811

Otherwise, u2 is incident with f1 and f2 but not f3. If u2 is a large vertex, it sends charge 2 · 12812

by (R0) or (R2b). Otherwise, since G contains neither a (C3) or a (C4), there is a third full813

vertex u3. The cluster receives charge 2 · 13 from u2 by (R2a) and charge at least 1
3 from u3 by814

(R0) or (R2). In each case, the resulting final charge is nonnegative.815

Case 6: (K6b) Let f1, f2, f3, and f4 be 3-faces in a 4-fan cluster (K6b). Let v be the center of816

the fan, with neighbors u1, u2, u3, u4, and u5 where for i ∈ {1, 2, 3}, fi and fi+1 are adjacent on817

the edge vui+1. If the cluster contains the precolored face, then the initial charge on the cluster818

is −3. If f1 or f4 is precolored, then the cluster receives charge 4 · 12 by (R0) and charge 4 · 38 by819

(R1); if f2 or f3 is precolored, then the cluster receives charge 5 · 12 by (R0) and charge 5 · 38 by820

(R1). In either case, the resulting final charge is positive.821

If the cluster does not contain the precolored face, then the initial charge on this cluster is −4.822

By (R1), the cluster receives charge 6 · 38 , resulting in charge −7
4 . If v is a heavy vertex, then823

by (R0) or (R2b) v sends charge 4 · 12 to the cluster, resulting in positive charge. Otherwise,824

v /∈ V (P ) and v is a 5-vertex, so v sends charge 1 to the cluster by (R2a), resulting in charge825

−3
4 . If there is a heavy vertex in {u2, u3, u4}, then that vertex contributes charge 2 · 12 to the826

cluster, resulting in a positive charge. If there is no heavy vertex in {u2, u3, u4}, then there is827

at least one 5-vertex in {u2, u3, u4} since G contains no (C4). If there are multiple 5-vertices in828

{u2, u3, u4}, then each sends charge 2 · 13 to the cluster by (R2a), resulting in positive charge. If829

there is only 5-vertex w among u2, u3, and u4, then there is a full vertex z ∈ {u1, u5} since G830

does not contain (C4) or (C5); the cluster receives charge 2 · 13 from w by (R2a) and at least 1
3831

from z by (R0) or (R2), resulting in positive final charge.832
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Figure 13: Clusters (K6c) and (K6d).

Case 7: (K6c) Let f1, f2, f3, and f4 be the 3-faces of this cluster (K6c) where f4 is adjacent to833

each fi for i ∈ {1, 2, 3}. If the cluster contains the precolored face, then the initial charge on the834

cluster is −3. If one of f1, f2 or f3 is precolored, the cluster receives charge 4 · 12 by (R0) and835

charge 4 · 38 by (R1). If f4 is precolored, then the cluster receives charge 6 · 12 by (R0). In either836

case, the resulting final charge is nonnegative.837

If the cluster does not contain the precolored face, then the initial charge on the cluster is −4.838

By (R1), the cluster receives charge 6 · 38 , resulting in charge −7
4 . Let u1, u2, u3, u4, u5, and839

u6 be the vertices on the boundary of the cluster ordered such that u2, u4, u6 are the vertices840

incident to f1 and f2, f2 and f3, and f3 and f1, respectively. Since G contains no (C3), there841

are at least two full vertices in {u2, u4, u6}. By (R0) or (R2), these vertices each send charge at842

least 1 to the cluster, resulting in a positive total charge.843

Case 8: (K6d) Let f1, f2, f3, and f4 be cyclically-ordered 3-faces in a 4-wheel with center vertex v844

where fi and fi+1 share a common edge for i ∈ {1, 2, 3, 4}, where indices are taken modulo 4; let845

g be a 3-face adjacent to f4 but not incident to v, completing our cluster (K6d). If the cluster846

contains the precolored face, then the initial charge on the cluster is −4. If f1 or f3 is precolored,847

then the cluster receives charge 6 · 12 by (R0) and charge 4 · 38 by (R1). If f2 is precolored, then848

the cluster receives charge 5 · 12 by (R0) and charge 4 · 38 by (R1). If f4 is precolored, then the849

cluster receives charge 7 · 12 by (R0) and charge 5 · 38 by (R1). In each of the above cases, the850

final charge is nonnegative. If g is precolored, then the cluster receives charge 4 · 12 by (R0) and851

charge 3 · 38 by (R1), resulting in charge −7
8 . Let N(v) = {u1, u2, u3, u4} where ui is incident852

to fi and fi+1 for all i ∈ {1, 2, 3, 4}. Since G does not contain (C3), u1 and u2 are full vertices.853

Each of u1 and u2 sends charge at least 2 · 13 to the cluster by (R2), resulting in nonnegative854

charge.855

If the cluster does not contain the precolored face, then the initial charge on this cluster is −5856

and v /∈ V (P ). By (R1), the cluster receives charge 5 · 38 , resulting in charge −25
8 . Since G857

does not contain (C3), u1, u2, u3, and u4 are full vertices. By (R0) or (R2), the cluster receives858

charge at least 2 · 13 from each of u1 and u2 and charge at least 3 · 13 from each of u3 and u4,859

resulting in a positive final charge.860

Case 9: (K6e) Let f1, f2, f3, f4, and f5 be the cyclically-ordered 3-faces in a 5-wheel with center861

vertex v where fi and fi+1 share a common edge for i ∈ {1, 2, 3, 4, 5}, where indices are taken862

modulo 5. Let N(v) = {u1, u2, u3, u4, u5} where ui is incident to fi and fi+1 for i ∈ {1, 2, 3, 4, 5}.863

If the cluster contains the precolored face, then the initial charge on the cluster is −4. The864

cluster receives charge 6 · 12 by (R0) and charge 4 · 38 by (R1), resulting in a positive final charge.865
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Figure 14: Clusters (K6e) and (K6f).

If the cluster does not contain the precolored face, then the initial charge is −5 and v /∈ V (P ).866

By (R1), the cluster receives charge 5 · 38 , and by (R2), the cluster receives charge 1 from v,867

resulting in charge −17
8 . Since G does not contain (C4) or (C6), there are at least three full868

vertices in N(v). If N(v) contains at least three heavy vertices, then the cluster receives charge869

at least 6 · 12 by (R0) or (R2b), resulting in a positive final charge. If N(v) contains exactly two870

heavy vertices, then the cluster receives charge 4 · 12 by (R0) or (R2b) and charge 2 · 13 from a full871

vertex by (R2a), resulting in positive charge. If N(v) contains exactly one heavy vertex, then872

the cluster receives charge 2 · 12 by (R0) or (R2b) and charge 2 · 13 from each of two full vertices873

by (R2a), resulting in positive final charge.874

If N(v) contains no heavy vertices, then there are at least three full vertices in N(v). Since G875

does not contain (C4), there are at least two nonadjacent 5-vertices in N(v). Further, since G876

does not contain (C6), (C7), or (C8), there are at least four 5-vertices in N(v). The cluster877

receives charge 2 · 13 from each of these vertices by (R2a), resulting in a positive final charge.878

Case 10: (K6f) Let f1 and f2 be the interior 3-faces in the two overlapping 4-wheels that make879

up the cluster (K6f). Let u1 and u2 be the shared vertices of f1 and f2 and let z and w be the880

vertices incident with f1 and f2, respectively, that have not yet been labeled. Since G contains881

no (C3), at least one of u1 and u2 is in V (P ). Then since all the precolored vertices lie on a882

common face, the cluster contains the precolored face, so the initial charge is −5. If f1 or f2 is883

precolored, then the cluster receives charge 8 · 12 by (R0) and charge 4 · 38 by (R1), resulting in884

a positive final charge. If one of the other 3-faces is precolored, then the cluster receives charge885

6 · 12 by (R0) and charge 3 · 38 by (R1), resulting in charge −7
8 . Since G contains no (C3), one of886

w and z is a non-precolored 5+-vertex. This vertex sends charge at least 3 · 13 to the cluster by887

(R2), resulting in a positive final charge.888

We have verified that the total charge after discharging is nonnegative, contradicting the neg-889

ative initial charge sum. Thus, a minimal counterexample does not exist and every planar graph890

with no chorded 7-cycle is (4, 2)-choosable.891

7 Conclusion and Future Work892

We proved that, for each k ∈ {5, 6, 7}, planar graphs with no chorded k-cycles are (4, 2)-choosable.893

Our methods for proving reducible configurations created several large classes of reducible config-894

urations, such as templates; naturally, there are many more reducible configurations than the ones895

we explicitly used. Unfortunately, we were unable to extend these results to prove Conjecture 1.3,896

that all planar graphs are (4, 2)-choosable.897
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A Large Reducible Configurations928

In the proof of Theorem 4.1, we demonstrated that no minimal counterexample exists by showing that929

there exists a reducible configuration (C,X, ex) where G contains a copy of C[X] as an induced subgraph930

(and also the copy agrees with the external degrees). In this appendix, we provide the details that clarify931

this assumption. By Lemma 3.2, we can relax the condition that C[X] is an induced subgraph. We will932

demonstrate that the configurations that appear after some vertices in X are merged (while also preserving933

the face lengths, vertex degrees, and lack of chorded 5-cycle) result in reducible configurations.934
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Let (C,X, ex) be a reducible configuration and let {x1, x′1}, . . . , {xt, x′t} be a list of vertex pairs in X.935

For these configurations, we may identify some 3-cycles and 5-cycles that are required to be 5-faces (in the936

context of the proof of Theorem 4.1). The resulting configuration (C ′, X ′, ex) where C ′ and X ′ are modified937

from C and X by merging xi with x′i and removing any multiedges or loops that result. We say a list938

{x1, x′1}, . . . , {xt, x′t} is valid for (C,X, ex) if the resulting configuration (C ′, X ′, ex) may appear in a planar939

graph of minimum degree at least four containing no chorded 5-cycle. There are three situations that can940

occur when we perform this action.941

Pairs too close: If some pair {xi, x′i} have d(xi, x
′
i) ≤ 2, then either we create a loop or a multiedge when942

merging xi and x′i. This will reduce the degree of the resulting vertex, in addition to possibly shortening943

known 3- and 5-cycles. Since distances only decrease as vertices are merged, a pair failing this property will944

not appear in any valid list of pairs.945

Pairs creating chord: If merging xi and x′i creates a chorded 5-cycle, then this configuration would not946

appear in the minimal counterexample from Theorem 4.1. Since distances only decrease as vertices are947

merged, a pair failing this property will not appear in any valid list of pairs.948

Reducible pairs: If merging xi and x′i does not fit in the above two cases, then we will demonstrate that949

the resulting configuration is reducible. Even if merging one pair of vertices creates a reducible configuration,950

we need to check all possible lists of pairs that contain that pair.951

After considering all pairs that could be identified, observe that in each case there is no set of three or952

more vertices where every pair can be identified.953

In the following tables, we list one of the configurations (C10)–(C21), label the vertices, and list all pairs954

of vertices into the three categories above. In the case of reducible pairs, we present the contracted graph.955

Most of these contracted graphs contain a copy of (C1), (C2), (C10), (C11), or (C12). The only exceptions956

are the contracted graphs derived from (C16), but each of these configurations has an Alon-Tarsi orientation957

and hence is reducible.958

(C10)

ab

c
d

e

f Pairs too close: ab, ac, ad, ae, af , bc, bd, be, cd, ce, cf , de, df ,
ef .

Pairs creating chord: bf

Reducible pairs: None remain.

959

(C11)

a
b

c

d
e

f

g

Pairs too close: ab, ac, ad, ae, af , ag, bc, bd, bf , bg, cd, ce, cg,
de, df , dg, ef , eg, fg.

Pairs creating chord: be, cf

Reducible pairs: None remain.

960
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(C12)

a

b

c

de

f

Pairs too close: ab, ac, ad, ae, af , bc, bd, be, bf , cd, ce, cf , de,
df , ef .

Pairs creating chord: None remain.

Reducible pairs: None remain.

961

(C13)

g
h

a

b

c

d

e

f

Pairs too close: ab, ac, ad, ag, ah, bc, bg, bh, cf , cg, ch, de, df ,
dg, dh, ef , eg, eh.

Pairs creating chord: ae, af , bf , bd, cd. ce.

Reducible pairs: be (contains (C1))

g

h

a be

c

d

f

Contains (C1) on 4-cycle be, f, g, c.

962

(C14)

ab

c d

i

e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bd, bh, bi, cd, ci,
de, dh, di, ef , eg, eh, ei, fg, fg, fi, gh, gi, hi.

Pairs creating chord: af , be, ce, ch, df , dg.

Reducible pairs: bg (contains (C11)), cf (contains (C11)), bg
and cf (contains (C12)).

a

bgc

d

i

e

f

h

a

b cf

d

i

e

g

h

a

bg

cf

d

i

eh

Contains (C11) Contains (C11) Contains (C12)

after deleting vertex h. after deleting vertex d. after deleting vertex h.

963

32



(C15)

ab

c d i
e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bd, bh, bi, cd, ce,
ci, de, df , dh, di, ef , eg, eh, ei, fg, fh, fi, gh, gi, hi.

Pairs creating chord: af , ag, be, bf (bf, a, i, h, g, bf), bh, cg
(cg, d, i, e, f, cg), ch, dg.

Reducible pairs: bg (contains (C2)), cf (contains (C1)), bg and
cf (contains (C1)).

a

bgc

d

i

e

f

h

a

b

cf

d
i

e
g

h

a

bg

cf

d

i

eh

Contains (C2) Contains (C1) Contains (C1)

on 6-cycle bf, f, e, i, d, c. on 4-cycle cf, e, i, d. on 4-cycle cf, e, i, d.

964
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(C16)

a
b

c d

e

j fk
`
m

g
h

i

Pairs too close: ab, ac, ad, ae, af , ag, ai, aj, ak, am, bc, bd, be,
bf ,bj, bk, b`, bm, cd, ce, cj, cm, de, df , di, ef , eg, eh, ei, ej, fg,
fh, fi, fj, gh, gi, hi, jk, j`, jm, k`, km, `m.

Pairs creating chord: ah, a`, bh, bg, bi, cf , ck, cg, ci, c`, dg, dh,
dj, dk, dm, ek, e`, em, fk, f`, fm, gj,gk, gm, hj, ij, ik, im.

Reducible pairs: ch (has Alon-Tarsi orientation), d` (symmetric
to ch), hk (has Alon-Tarsi orientation), hm (has Alon-Tarsi orien-
tation), h` (has Alon-Tarsi orientation), g` (symmetric to hk), i`
(symmetric to hm).

a
b

ch

d
e

j
f

k
`
m gi

a
b

c d

e

j f

`

m

g

hk

i

a
b

c d

e

j f

k

m

gh`

i

a
b

c d

e

j
f

k

`
ghm

i

965

(C17)

ab

c

d

h

e

f
g

Pairs too close: ab, ac, ad, ae, af , ag, ah, bc, bd, be, bh, cd, ce,
cf , ch, de, df , dg, ef , eg, fg.

Pairs creating chord: bf , bg, cg, dh, fh, gh.

Reducible pairs: None remaining.
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(C18)

ab

c d

h
e

f
g

Pairs too close: ab, ac, ad, ae, af , ag, ah, bc, bd, be, bh, cd, ce,
cf , ch, de, df , dg, dh, ef , eg.

Pairs creating chord: bf , bg, cg, eg.

Reducible pairs: None remaining.

967

(C19)

ab

c

d
j

i e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bc, bh, bi, bj, cd,
ci, cj, de, dh, di, dj, ef , eg, eh, ei, fg, fh, fi, gh, gi, hi.

Pairs creating chord: af , aj, be, ce, cf (cf, e, i, d, j), cg
(cg, h, i, d, j), ch, df , dg.

Reducible pairs: bf (contains (C10)), bg (contains (C2)).

a

bfc

d

i

e
gh

a

bgc

d

j

i e

f

h

Contains (C10) Contains (C2)
on 5-cycle h, g, bf, e, i and

vertex a.
on 6-cycle bg, f, e, i, d, c.
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(C20)

ab

c d

k

i

j
e f

gh

Pairs too close: ab, ac, ad, ae, ah, ai, aj, ak, bc, bd, bi, bk, cd,
ci, cj, ck, de, dh, di, dj, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh, gi,
hi, hj, ij, ik.

Pairs creating chord: af (af, e, j, d, i), ag (ag, f, e, j, i), be,
bf (bf, a, i, j, e), bg (bg, h, i, a, k), bh, bj, ce, cf (cf, d, i, j, e), cg
(cg, h, i, j, d), ch, df , dg, dk, ek (ek, j, d, i, a), fk (fk, e, j, i, a), gj,
gk (gk, h, i, a, b), jk (jk, d, c, b, a).

Reducible pairs: hk (contains (C10)).

a

b

c d

hk

i
e f

g

Contains (C10) on 5-cycle hk, g, f, e, i and vertex a.

969

(C21)

ab

c d

k

i

j
e f

gh

Pairs too close: ab, ac, ad, ae, ah, ai, aj, ak, bc, bd, bi, bk, cd,
ci, cj, ck, de, dh, di, dj, dk, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh,
gi, hi, hj, ij.

Pairs creating chord: af (af, e, j, d, i), ag (ag, f, e, j, i), be, bf
(bf, a, i, j, e), bh, bj, ce, cf (cf, d, i, j, e), cg (cg, h, i, j, d), ch, df ,
dg, dk, ek (ek, j, i, d, c), gj, hk (hk, i, a, b, c), ik, jk (jk, i, a, b, c).

Reducible pairs: fk (Contains (C11)), gk (Contains (C11)), bg
and fk (Contains (C12)). (Note: if we identify only bg, then k
must be identified with f in order to preserve that g has total
degree four.)

a

bc

d

fk

i
e

g
h a

b

c

d

gk

i
e

f

h
a

bg

c

d

i
e

fk

h

Contains (C11) Contains (C11) Contains (C12)
after deleting vertices c

and d.
after deleting vertices c

and d.
after deleting vertices c

and d.
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