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Abstract4

We determine the maximum number of induced copies of a 5-cycle in a graph on n vertices5

for every n. Every extremal construction is a balanced iterated blow-up of the 5-cycle with the6

possible exception of the smallest level where for n = 8, the Möbius ladder achieves the same7

number of induced 5-cycles as the blow-up of a 5-cycle on 8 vertices.8

This result completes work of Balogh, Hu, Lidický, and Pfender [Eur. J. Comb. 52 (2016)]9

who proved an asymptotic version of the result. Similarly to their result, we also use the flag10

algebra method but we extend its use to small graphs.11
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1 Introduction14

The inducibility of a graph H on k vertices is the limit of the maximum density of induced copies15

of H present in an extremal graph G on n vertices, where n goes to infinity:16

ind(H) := lim
n→∞

max
|G|=n

|{{v1, . . . , vk} : G[{v1, . . . , vk}] ' H}|(
n
k

) .17

We say that G is a blow-up of H if either |H| > |G|, or if we can get G from H by replacing18

each vertex v ∈ V (H) by some non-empty graph Hv, and every edge vw ∈ E(H) by the complete19

bipartite graph between Hv and Hw. If |Hv| − |Hw| ≤ 1 for any two vertices v, w ∈ V (H), this is20

called a balanced blow-up of H. The graph G is an iterated balanced blow-up of H if further every21

Hv itself is an iterated balanced blow-up of H; see Figure 1.22

Pippenger and Golumbic [21] observe that the iterated balanced blow-ups of H give a lower23

bound for the inducibility. In this same paper, they ask for which graphs this bound is sharp, and24

they conjecture that this bound is sharp for all cycles Ck with k ≥ 5. Balogh, Hu, Lidický, and25

Pfender prove the first case k = 5 in [2], and Brandt, Lidický, and Pfender extend similar methods26

to the case k = 6, see [6]. Král’, Norin, and Volec [16] give a general upper bound that every27

n-vertex graph has at most 2nk/kk induced cycles of length k. In a very recent paper, Blumenthal28
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Figure 1: Iterated blow-up of C5.

and Phillips show a result similar to [2] for the net graph N on six vertices [4], the unique graph29

with degree sequence (3, 3, 3, 1, 1, 1).30

While inducibility is by definition an asymptotic concept, we are in general interested in the31

extremal question of maximizing the number of induced copies of a given graph H in a host graph32

on n vertices, and the extremal graphs. The previous results fall short of a complete answer to this33

question unless n = 5k or n = 6k, respectively. In this paper, we completely answer this question34

for H = C5, for all n.35

Iterated balanced blow-ups are self-similar much in the same way that fractals are, and so we36

call a graph H a fractalizer if its extremal graphs are in fact iterated balanced blow-ups of H. To37

make this notion more precise, there are different options to formalize this idea.38

Definition 1.1. All of the following properties in some sense formalize the idea of a fractalizer.39

(F1) The iterated balanced blow-ups of H achieve in limit the inducibility of H.40

(F2) There exists an n0 such that for every n ≥ n0, some graphs on n vertices maximizing the41

number of induced copies of H are balanced blow-ups of H.42

(F3) There exists an n0 such that for every n ≥ n0, all graphs on n vertices maximizing the number43

of induced copies of H are balanced blow-ups of H.44

(F4) For every n, an iterated balanced blow-up of H on n vertices maximizes the number of induced45

copies of H.46

(F5) For every n, all graphs on n vertices maximizing the number of induced copies of H are47

iterated balanced blow-ups of H.48

The following proposition follows straightforward from the definition.49

Proposition 1.2. For every H, (F5) ⇒ (F4) ⇒ (F2) ⇒ (F1) and (F5) ⇒ (F3) ⇒ (F2) ⇒ (F1).50

In these terms, Pippenger and Golumbic are interested in graphs with (F1). The theorems51

in [2], [6] and [4] imply the stronger notion (F3) for the considered graphs.52

The term fractalizer for this concept is due to Fox, Huang and Lee in [11], and they choose to53

ask for the strongest notion (F5).54
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Figure 2: Möbius ladder on 8 vertices.

Definition 1.3. A graph H is a fractalizer, if for every n, all graphs on n vertices maximizing the55

number of induced copies of H are iterated balanced blow-ups of H.56

It is easy to see that if H is a fractalizer, then its complement is also a fractalizer. Further, each57

complete and each empty graph is trivially a fractalizer. Other than these two classes of graphs,58

no specific fractalizers are known among simple graphs. On the other hand, the main result by59

Fox, Huang, and Lee [11] implies that almost all graphs are fractalizers: for n → ∞ and constant60

p, a random graph Gn,p is almost surely a fractalizer. A similar result is proved independently by61

Yuster in [24].62

The notion of fractalizer can be extended to other structures. Mubayi and Razborov [19] showed63

that every tournament on k ≥ 4 vertices whose edges are colored by
(
k
2

)
distinct colors is a fractalizer64

in the (F4) sense. They used this to determine the precise number where a certain Ramsey problem65

transitions from polynomial to exponential growth, settling a conjecture of Erdős and Hajnal [9]66

for all k ≥ 4.67

It is known that there are no non-trivial fractalizers on at most 5 vertices among simple graphs;68

see [10]. The only such graph with (F1) is the 5-cycle, as all other graphs have constructions with69

more induced subgraphs in the limit. It has been observed by Michael [18] that for n = 8, there70

exist graphs with 8 induced 5-cycles other than the balanced blow-ups: the Möbius ladder on 871

vertices, i.e. an 8-cycle to which we add the 4 diagonals, and its complement. This implies that for72

many n, there are graphs which match the number of 5-cycles in the iterated balanced blow-ups.73

Take for example n = 40, and consider the balanced blow-up of H = C5 with some of the Hv being74

Möbius ladders. Such a construction extends for all n with 7 · 5k < n < 9 · 5k for some k ∈ N.75

The purpose of this paper is two-fold. We show that C5 has (F4). We do this in a very strong76

sense, almost showing that C5 is a fractalizer. Every extremal graph can differ from an iterated77

balanced blow-up only at the smallest level, and only in the very limited way described above.78

Theorem 1.4. For all n 6= 8, all graphs on n vertices maximizing the number of induced copies of79

C5 are balanced blow-ups of C5. For n = 8, the only extremal graphs are the balanced blow-ups of80

C5, the Möbius ladder, and its complement. Further, the only fractalizers on 5 vertices are K5 and81

K5.82

As a consequence, this theorem provides a novel proof that the 5-cycle has (F3) with n0 = 9,83

compared to a much larger n0 implied but never determined in [2]. We first tried to repeat the84
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arguments in [2] to prove Theorem 1.4 through some sort of enumeration of small cases, but we85

quickly realized that this was hopeless. Instead, we find a different and more direct approach86

that is much more amendable. We still rely heavily on large computations, but the arguments are87

considerably simpler.88

Computations appear in several parts of the proof. First, flag algebra computations are used to89

establish a key inequality, and this is the only part that requires significant computational resources.90

Technically, these computations themselves are not part of the proof, but even the certificate in91

form of a semidefinite matrix is too large to present here. This inequality is then used to show the92

general structure of the extremal graphs, with a small number of possible defects. These defects are93

then addressed via stability arguments, yielding more inequalities. For small cases up to n = 1000,94

we can then construct all graphs satisfying all inequalities with the help of the computer, and95

count the cycles. For larger n, we first create a continuous model, which we then discretize using96

a dynamic mesh to show that there are no defects in the construction.97

In this write up, we describe all used programs to a point that an interested reader could recreate98

them, but they are not the main focus of the paper. Oftentimes, we choose simpler programs at99

the cost of slightly longer running time. While some cases could be checked by hand, and further100

arguments could reduce some computations, this would not enhance our insight into the problem.101

Computer programs used in proofs are available on arXiv and at https://lidicky.name/pub/102

c5frac.103

2 Proof of Theorem 1.4104

The proof proceeds by induction on n. We use flag algebra calculations to establish an inequality105

between subgraph densities central to our argument. In this process, we enumerate all graphs106

with at most 8 vertices. The extra effort to validate the statement for these graphs is minimal.107

Therefore, we assume now that G is a graph on n ≥ 9 vertices, and the statement is true for all108

smaller graphs.109

As C5 is self complementary, we can often simplify our work by using the complement. For this110

purpose, we interchangeably consider two-colorings of complete graphs with red and blue edges111

instead of the equivalent model of graphs with edges and non-edges. Note further that every112

induced red C5 is an induced blue C5 at the same time, so we will often just talk about an induced113

C5 without specifying the color.114

We will denote C(G) to be the 5-cycle density in the graph G. In the specific case where G is115

an iterated balanced blow-up of the 5-cycle on n vertices, we will denote this quantity by C(n).116

Note here that all iterated balanced blow-ups of C5 on n vertices have the same number of induced117

5-cycles. If we let n = 5k + a, a, k ∈ N, 0 ≤ a < 5, then we easily compute118

C(n) =
k5−a(k + 1)a + (5− a)

(
k
5

)
C(k) + a

(
k+1
5

)
C(k + 1)(

n
5

) . (1)119

Notice that120

lim
n→∞

C(n) =
1

26
. (2)121

122

As mentioned above, we will use the flag algebra method to prove a central inequality in123

Lemma 2.1 below. This is a bit counterintuitive as the method is designed for large graphs, or124
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Figure 3: The 6 different graphs in C••, only red edges are depicted.

more precisely, for graph limits, and G has fixed, and possibly small, order. For this reason, we125

will look at a balanced blow-up G∗ of G. Flag algebras are then able to give bounds for G∗, which126

we can then use to infer bounds for G.127

Let G∗k be the graph which we get by replacing every vertex of G on n vertices by an iterated128

balanced blow-up of C5 on 5k vertices, where k is very large, so |G∗k| = n5k. Then let G∗ be the129

limit object as k →∞. This definition ensures that G∗ maximizes the number of induced 5-cycles130

over all balanced blow-ups of G by the results in [2], but we will not use this fact in our proof. Let131

Gv for v ∈ V (G) denote the set of vertices in G∗ that are in the blow-up set of v. We can then132

calculate C(G∗) based on C(G). In the following formula we use (2). We further use that every133

induced C5 in G∗ either completely lies in some Gv, or intersects five different sets Gv in one vertex134

each and obtain135

C(G∗) =
n+ 26n(n− 1)(n− 2)(n− 3)(n− 4)C(G)

26n5
. (3)136

Similarly as above, in the special case where G is a balanced iterated blow-up of a 5-cycle on n137

vertices, we will define C(n∗) := C(G∗). Note that C(n∗) can be calculated explicitly from (1) and138

(3).139

Let C•• be the class of balanced blow-ups of C5 on 7 vertices. There are 6 different graphs140

in C••, up to isomorphism, differentiated by the location of the blow-up sets of size two, and by141

the color of the edges inside the blow-up sets, see Figure 3. Let C••(G) be the combined induced142

density of C•• in G. For any set X ⊆ V (G) of at most 7 vertices, let C••X (G) denote the density of143

7− |X| element vertex sets Y disjoint from X such that G[X ∪ Y ] is isomorphic to a graph in C••.144

We bound C(G) in terms of C••(G) using the flag algebra method. We defer the proof of this145

key lemma to Section 3.146

Lemma 2.1. For every graph G with C(G∗) > 0.03,147

C••(G∗) ≥ −0.175431374077117 + 8.75407592662244C(G∗).148

Assume from now on that G is extremal, i.e. G maximizes the number of induced 5-cycles over149

all graphs on n vertices. In particular, C(G∗) ≥ C(n∗). We compute C(n∗) explicitly for n < 100,150
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and observe that C(n∗) > 0.03. For n ≥ 100, we have151

C(n∗) >
⌊n

5

⌋5 5!

n5
≥ 5!

(
n− 4

5n

)5

≥ 5!

(
96

500

)5

> 0.031,152

so Lemma 2.1 applies to G. Our goal is to show that the top level of G is a blow-up of C5, i.e.153

V (G) can be partitioned into five non-empty parts X1, X2, X3, X4, X5, such that all edges between154

Xi and Xj are blue if |i − j| ∈ {1, 4}, and red if |i − j| ∈ {2, 3}. Towards this, for any partition155

V (G) = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5, call an edge funky if it has the wrong color according to this156

partition. We will denote the set of funky edges by Ef , and the number of funky edges incident to157

a vertex v by df (v). Let xi := 1
n |Xi| be the normalized sizes of the parts, and let f

(
n
2

)
= |Ef | be158

the number of funky edges. A partition is more desirable if it contains more edges between different159

parts which are not funky. Note that our desired balanced partition maximizes this quantity for160

a given n. While we cannot guarantee this perfect partition at this point, we can show a lower161

bound.162

Lemma 2.2. There exists some partition of V (G) into X1, . . . , X5 such that,163

∑
1≤i<j≤5

xixj −
(
n
2

)
n2

f ≥ 2(−0.175431374077117 + 8.75407592662244C(n∗))

21C(n∗)
.164

Proof. Let Z be a set of five vertices in V (G∗) inducing a C5 such that C••Z (G∗) is maximized. As165

C5 is not a blow-up of any graph H with 2 ≤ |H| ≤ 4, there are two cases to consider. Either166

Z ⊂ Gv for some v ∈ G, or |Z ∩ Gv| ≤ 1 for all v ∈ V (G), and the vertices v ∈ V (G) with167

|Z ∩Gv| = 1 induce a C5 in G. We claim the later is true.168

If Z ⊂ Gv, then any vertex set Y such that Y ∪ Z induces a graph in C•• must also be in Gv.169

Thus, C••Z (G∗) ≤ 1
n2 . On the other hand, as G contains 5-cycles, we can find a Z with |Z∩Gvi | = 1170

for 1 ≤ i ≤ 5, and v1v2v3v4v5v1 an induced 5-cycle in G. Then Y ∪ Z induces a graph in C•• for171

any choice of Y intersecting exactly two of the Gvi , and thus C••Z (G∗) ≥ 20
n2 , proving that Z 6⊂ Gv172

for any v.173

As Z maximizes C••Z (G∗), we know that C••Z (G∗) is greater than or equal to the average over174

all sets inducing a 5-cycle in G∗. For any graph in C••, exactly 4 of the 21 subgraphs on 5 vertices175

are 5-cycles. Therefore,176

C••Z (G∗) ≥ 4C••(G∗)

21C(G∗)
177

≥ 4(−0.175431374077117 + 8.75407592662244C(G∗))

21C(G∗)
by Lemma 2.1,178

≥ 4(−0.175431374077117 + 8.75407592662244C(n∗))

21C(n∗)
,179

180

where the last inequality is true since C(G∗) ≥ C(n∗), and the function is monotone increasing.181

Now partition V (G) = X1∪· · ·∪X5 according to Z, that is, if v ∈ V (G) and {v1, v2, v3, v4, v5}\182

{vi}∪{v} is a 5-cycle, then v ∈ Xi. Note that this rule assigns v to at most one Xi. The remaining183

vertices are assigned to the Xi arbitrarily. Observe that for v∗ ∈ Gv, w∗ ∈ Gw, Z∪{v∗, w∗} induces184

in G∗ a graph in C•• if and only if both v and w are assigned to different Xi by the rule, and the185
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edge vw is not funky. Therefore,186 ∑
i 6=j |Xi| |Xj | − 2

(
n
2

)
f

n2
≥ C••Z (G∗),187

188

and the lemma follows.189

The following technical lemma is helpful in creating the mathematical programs used in some190

of the remaining claims.191

Lemma 2.3. Let G be a graph on n vertices, and let X ⊂ V (G).192

1. If |X| = 1, then X = {x} is contained in at most r2b2

16 ≤
(
n−1
4

)4
copies of an induced C5,193

where r and b are the numbers of red and blue neighbors of x, respectively.194

2. If |X| = 2, then X is contained in at most
(
n−2
3

)3
copies of an induced C5.195

3. If |X| = 3, then X is contained in at most
(
n−3
2

)2
copies of an induced C5.196

Proof. To see the second and third statement, notice that the edges in X, and the edges from any197

vertex in V (G) −X to X completely determine where on a C5 that vertex can lie, or if it can lie198

on a C5 at all. For instance, if X = {w1, w2}, w1w2 is red, and w1w2w3w4w5w1 is a red cycle, then199

for each wi, 3 ≤ i ≤ 5, the colors of (w1wi, w2wi) are different. Therefore we can maximize the200

number of 5-cycles by partitioning the vertices in V (G) \X into two (or three) equal classes with201

the edges colored these ways.202

To see the first statement, notice that every C5 containing x has exactly two red and two blue203

neighbors of x. For every red neighbor v and blue neighbor w, let204

a(v, w) =

{
1, if vw is red,

0, if vw is blue.
205

Denote |a(., w)| as the number of ones in a(., w), that is the number of red neighbors shared between206

w and x. For u, v red neighbors of x, let h(u, v) be the Hamming distance of the two vectors207

a(u, .), a(v, .) ∈ {0, 1}b, that is the number of coordinates where a(u, .) and a(v, .) differ. This208

quantity is important as every C5 containing {x, u, v} must contain one vertex w with a(u,w) =209

1− a(v, w) = 0 and one vertex y with a(u, y) = 1− a(v, y) = 1. In particular, there can be at most210

h(u,v)2

4 5-cycles containing {x, u, v}. Therefore the number of 5-cycles is at most211

1

4

∑
xu,xv red

h(u, v)2 ≤
maxxu,xv red h(u, v)

4

∑
xu,xv red

h(u, v)212

≤ b

4

∑
xu,xv red

h(u, v)213

=
b

4

∑
xw blue

|a(., w)|(r − |a(., w)|)214

≤ b2r2

16
.215

216

217
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We are now ready to show that in a partition V (G) = X1 ∪X2 ∪X3 ∪X4 ∪X5 maximizing the218

number of non-funky edges between parts, there are no funky edges. We split the argument into219

two parts, depending on the size of n.220

Case 1. 9 ≤ n ≤ 1000:221

We first change the color of all funky edges to create a graph G1 without funky edges, where we222

also change the graphs inside the Xi to iterated balanced blow-ups of C5. The number of 5-cycles223

in G1 is then easily calculated as224

C(G1) =
120x1x2x3x4x5n

5 +
∑

i xin(xin− 1)(xin− 2)(xin− 3)(xin− 4)C(xin)

n(n− 1)(n− 2)(n− 3)(n− 4)
.225

Furthermore, we provide generous bounds on the number of 5-cycles created and destroyed226

going from G to G1 (see Claims 2.4, 2.5, and 2.6). This together with the number of cycles in G1227

allows us to bound the number of 5-cycles in G without directly counting them.228

We then create an integer program (P ), for a fixed number of vertices, with an objective function229

of the difference between the bound on the number of 5-cycles in G discussed above and the number230

C(n) of 5-cycles in the balanced iterated blow-up on the same number of vertices. We then iterate231

through all possible sizes of the Xi for 9 to 1000 vertices. In this way, the program yields a232

contradiction for most choices of the Xi. The few remaining cases only appear on a relatively small233

number of vertices. This allows us to check these cases by a brute force method.234

To create our program (P ), let y1, . . . , y5 be a permutation of the xi’s such that y1 ≥ · · · ≥ y5.235

Recall that f := |Ef |/
(
n
2

)
is the scaled number of funky edges. If f = 0, we are done, so assume236

that f > 0. Let237

d =
1

f
(
n
2

)
n

∑
xy∈Ef

(df (x) + df (y)− 2)238

be the average number of funky edges incident to a funky edge, divided by n.239

Claim 2.4. The graph G contains at most240

1

2
f

(
n

2

)(
f

(
n

2

)
− dn− 1

)((
y1 + y2 +

1

2
(y3 + y4 + y5)

)
n− 2

)
241

5-cycles which contain at least two non-incident funky edges.242

Proof. Pick two non-incident funky edges. In other words, we pick a funky edge, and then pick243

another funky edge not incident to the first one, and then multiply this count by 1
2 because we244

counted every pair of edges twice. We can do this in245

1

2

∑
xy∈Ef

(
f

(
n

2

)
− df (x)− df (y) + 1

)
=

1

2
f

(
n

2

)(
f

(
n

2

)
− dn− 1

)
(4)246

ways, where the “+1” comes from double counting the edge xy in both df (x) and df (y).247

The four vertices, let us call them {w, x, y, z}, spanning the pair of funky edges must induce248

a red (and a blue) P4, as otherwise they cannot induce a C5 with a fifth vertex. Without loss of249

generality assume wx, xy, yz are the red edges inducing the P4. To count the 5-cycles we must then250

pick a 5th vertex (call this vertex v) such that vw and vz are red, and vx and vy are blue. Note that251
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with the proper combination of funky, non-funky, and edges within the Xis, v can be an element252

of any Xi. However, if any edge between v and {w, x, y, z} is funky, then this C5 contains at least253

two pairs of non-incident funky edges. As a consequence, our counting strategy of first choosing a254

pair of funky edges, and then adding a fifth vertex, will count this 5-cycle at least twice. To make255

up for this, we can add a factor of 1
2 to the number of such 5-cycles. Therefore, in order to prove256

the claim, it suffices to show that no matter the location of {w, x, y, z}, there are at most two sets257

Xi, such that we can have v ∈ Xi and no funky edge between v and {w, x, y, z}.258

If wx is funky, we may assume by symmetry that w ∈ X1 and x ∈ X3. In this case the only259

two sets where v may lie so that neither the red edge vw nor the blue edge vx is funky, are X1 and260

X5. Similarly if xw is not funky we may assume by symmetry that x ∈ X1, w ∈ X2. In this case261

the only sets that v can be in so that neither vw nor vx are funky are X2 and X5.262

Hence the number of choices for v to complete the C5 is at most263 (
y1 + y2 +

1

2
(y3 + y4 + y5)

)
n− 2,264

where −2 comes from v 6∈ {w, x, y, z}. Multiplying this with (4) finishes the proof of the claim.265

Claim 2.5. The graph G contains at most266

9

32
(dn+ 2)f

(
n

2

)
y21n

2
267

5-cycles with at least one funky edge, but without two non-incident funky edges.268

Proof. Note that no C5 in G can contain exactly one funky edge. If a C5 does not contain two269

non-incident funky edges, then either all funky edges are incident to a single vertex of the cycle, or270

there are exactly three funky edges forming a triangle.271

Let v be a vertex incident to at least two funky edges in the C5 we want to count, and say272

v ∈ X1. If the funky edges in the C5 we want to count form a triangle, note that this triangle273

must contain edges of both colors as C5 does not contain a monochromatic triangle. In this case,274

choose v to be a vertex incident to funky edges of both colors. We break the count up into cases275

based on the colors of funky edges incident to v, each of which will correspond to a term in a sum.276

Illustrations are provided in Figure 4.277

Case 1: v is incident to at least two red funky edges in the C5, say to vertices u,w ∈ X3 ∪X4.278

We know that u and w must be in the same set as otherwise the three vertices induce a red triangle,279

or uw is funky and we would have chosen a different vertex as v. By symmetry say u,w ∈ X3.280

The other two vertices in a C5 must each have exactly one red and one blue edge to {u,w}, which,281

without funky edges not incident to v, can only happen if they are also in X3. We can then directly282

apply part 1. of Lemma 2.3 to count at most
(rf (v))

2

4 · (y1n)
2

4 5-cycles for each such v ∈ V .283

Case 2: v has at least two blue funky edges. Similarly to Case 1, by applying Lemma 2.3 we284

count at most
(bf (v))

2

4 · y
2
1n

2

4 5-cycles for each such v ∈ V .285

Case 3: v has exactly one blue funky edge vu and one funky red edge vw. The edge uw may286

be either funky or not. Then u, v, w are in different sets Xi, and they span a red or blue P3. By287

symmetry, we may assume that it is a red P3 vwu, with the red cycle being vwuxyv. As uv is funky288

and blue, we may again assume by symmetry that u ∈ X2. We then have two subcases. First, Case289

3a: w ∈ X3. Then y ∈ X5 as both uy and wy are blue, and x ∈ X1 as both ux and xy are red.290

9



X1

X2 X3

X4

X5

v

w

u

Case 1

X1

X2 X3

X4

X5

Case 2

X1

X2 X3

X4

X5

v

u
w

y

x

Case 3a

X1

X2 X3

X4

X5

v

u

w

y

x

Case 3b

Figure 4: Cases where v is incident with two funky edges from Claim 2.5. Only red edges are
depicted.
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Similarily we have Case 3b: w ∈ X4. Then x ∈ X1 as ux is red (so x /∈ X4 ∪X5), vx is blue (so291

x /∈ X2), and wx is blue (so x /∈ X3). Similarly, y ∈ X2.292

Therefore for any choice of funky edges in this case, the two sets for x and y are determined,293

and they are different. This gives us an upper bound of rf (v)bf (v)y1y2n
2 5-cycles of this type294

containing v.295

Putting the three cases together, there are at most296

∑
v∈V

(
rf (v)2

4

y21n
2

4
+
bf (v)2

4

y22n
2

4
+ rf (v)bf (v)y1y2n

2

)
297

=
∑
v∈V

((
rf (v)y1n

4
+
bf (v)y2n

4

)2

+
7

8
rf (v)bf (v)y1y2n

2

)
298

≤
∑
v∈V

((
df (v)y1n

4

)2

+
7

8

(
df (v)y1n

2

)2
)

299

=
∑
v∈V

9

32
(df (v)y1n)2300

=
9

32

∑
vw∈Ef

(df (v) + df (w))y21n
2

301

=
9

32
(dn+ 2)f

(
n

2

)
y21n

2
302

303

5-cycles in G containing funky edges but no pair of non-incident funky edges.304

305

Now we are counting the new 5-cycles when switching from G to G1.306

Claim 2.6. The graph G1 contains at least307

f

(
n

2

)
n3
(
y3y4y5 −

3

8
dy3y4 −

1

8
fy3

)
308

5-cycles whose vertex set spans at least one funky edge in G.309

Proof. Note that the new 5-cycles are exactly the vertex sets {v1, v2, v3, v4, v5} with vi ∈ Xi which310

span at least one funky edge in G. We count these cycles using inclusion and exclusion principle311

by counting pairs (F,C), where F is a set of funky edges in G, and C is a 5 cycle in G1 containing312

the vertices of F .313

We start by counting pairs ({vw}, C), where vw is a funky edge in G. First we pick a vertex314

v, then a funky neighbor w from the df (v) choices, and then one vertex each from the three parts315

we have not yet used, which gives us at least y3y4y5n
3 choices. Summing up over all choices of v,316

this double counts the pairs, as we can reverse the roles of v and w, and we multiply by 1
2 to get317

the first term of the bound318 ∑
v∈V

1

2
df (v)y3y4y5n

3. (5)319

320
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This would be the number of new cycles if every new cycle contained exactly one funky edge. But321

new cycles with 2 ≤ r ≤ 10 funky edges are counted r times by this bound, so we have to carefully322

correct for this.323

In the next step, we are counting pairs ({vw, xy}, C), with vw, xy distinct funky edges in G.324

First, we are counting cycles with v = x. For a vertex v, there are at most
(
4
2

)
·(df (v)/4)2 = 3

8df (v)2325

ways to pick {w, y} from two different sets, with equality if v sends the same number of funky edges326

to each of the four parts. Then, the remaining two vertices for C are picked from the two remaining327

sets. As we are correcting for the double count in (5), this is maximized if these two last sets have328

sizes y3n and y4n.329

Next, we are counting cycles with vw and xy non-incident, i.e. the funky edges intersect four330

parts. We claim that there are at most
(f(n2))

2

4 pairs of funky edges intersecting four parts. Consider331

the graph with vertex set Ef , and two members of Ef are adjacent if they intersect a common Xi.332

As K5 has matching number 2, this graph has independence number at most 2. By Mantel’s333

Theorem this graph has at most
|Ef |2
4 non-edges, which correspond exactly to pairs of funky edges334

intersecting four parts in G.335

For every such pair of funky edges, we choose a fifth vertex in the remaining part to complete336

a new C5 in G1. As we are correcting for the double count in (5), this is maximized if this last set337

has sizes y3n.338

If we subtract the count of pairs ({vw, xy}, C) from (5), every cycle with r funky edges is339

counted r −
(
r
2

)
≤ 1 times. In total, this gives us a lower bound for new 5-cycles in G1:340

y3y4y5n
3
∑
v∈V

1

2
df (v)− 3

8
y3y4n

2
∑
v∈V

df (v)2 −
(
f
(
n
2

))2
4

y3n341

= y3y4y5n
3f

(
n

2

)
− 3

8
y3y4n

2
∑

vw∈Ef

(df (v) + df (w))−
(
f
(
n
2

))2
4

y3n342

= y3y4y5n
3f

(
n

2

)
− 3

8
y3y4n

3df

(
n

2

)
−
(
f
(
n
2

))2
4

y3n.343

344

This proves the claim as
(
n
2

)
≤ n2

2 .345

As the final step, we compare G1 to the iterated balanced blow-up of C5 on n vertices. Note346

that all induced C5 in G1 either contain one vertex from each Xi, or are completely inside one Xi.347

Therefore, by induction on n = 5k + j, 0 ≤ j ≤ 4, we have348

C(n)

(
n

5

)
− C(G1)

(
n

5

)
≥ k5−j(k + 1)j + (5− j)C(k)

(
k

5

)
+ jC(k + 1)

(
k + 1

5

)
−

(
5∏
i=1

yin+
5∑
i=1

C(yin)

(
yin

5

))
.

(6)349

350

We then wish to show that the balanced iterated blow-up of a 5-cycle contains more 5-cycles351

than G, which we do by creating an integer program to bound that difference. In particular, from352

Claims 2.4, 2.5, and 2.6, we may bound the net gain of 5-cycles created by removing the funky353

edges from G to get G1. Then from (6), we may also bound the gain in 5-cycles going from G1354

to the balanced iterated blow-up. This gives an objective function, which is a lower bound on the355
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difference in 5-cycles going from G to the balanced iterated blow-up. Thus, if our integer program356

evaluates to a positive number, we know that G cannot possibly be a counterexample. We also357

include Lemma 2.2 as bounds in the program. Furthermore, if we examine Claim 2.4, we can see358

that f
(
n
2

)
≥ dn + 1, as otherwise we would have a negative number of 5-cycles. Therefore, we359

solve the following program (P ) in the variables (y1, y2, y3, y4, y5, f, d), for the fixed n = 5k + j,360

0 ≤ j ≤ 4:361

(P) :minimize362

f

(
n

2

)
n3

(
y3y4y5 −

3

8
dy3y4 −

1

8
fy3363

− 1

4

(
f − f + d

n
− 1

n2

)(
y1 + y2 +

1

2
(y3 + y4 + y5)

)
− 9

32

(
d+

2

n

)
y21

)
364

+ k5−j(k + 1)j + (5− j)C5(k)

(
k

5

)
+ jC5(k + 1)

(
k + 1

5

)
365

−

(
5∏
i=1

yin+
5∑
i=1

C5(yin)

(
yin

5

))
366

subject to367

5∑
i=0

yi = 1,368

∑
1≤i<j≤5

yiyj − f
n− 1

2n
≥ 2(−0.175431374077117 + 8.75407592662244C(n∗))

21C(n∗)
,369

f

(
n

2

)
≥ dn+ 1,370

yi ≥ yi+1 ≥ 0 for i ∈ {1, . . . , 4},371

nyi ∈ N.372
373

Looking a bit closer, we quickly see that in an optimal solution, we have that f = 0 (and we are374

done) or f is maximized subject to the yi, and that d is maximized subject to f , which happens375

when the funky edges induce a star. Then376

2dn+ 2

n(n− 1)
= f =

∑
i<j

yiyj −
2(−0.175431374077117 + 8.75407592662244C(n∗))

21C(n∗)
,377

so (P ) reduces to a quartic program in the 4 free variables y1, y2, y3, y4, with all other variables378

dependent on these four.379

We check every 9 ≤ n ≤ 1000, for all possible values of y1, y2, y3, y4, with the help of a computer.380

It would be feasible to extend this approach a fair bit beyond n = 1000, but there is no need as381

our other case easily takes care of these values.382

This leads to a list of 14 possible values of y1, y2, y3, y4 where the objective function is negative,383

with at most 22 vertices, we have included the list in the Appendix. Note that each of these384

may correspond to more than one graph, as y1, . . . , y5 may not be in the same order as x1, . . . , x5.385

However in most cases there are only one or two ways in which the yi may be matched to the xi386
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once we consider the symmetry of the 5-cycle and the two colors. Since the value in the objective387

function is merely a bound on the difference in the number of 5-cycles between H and the iterated388

blow-up of a 5-cycle, this does not imply that the part sizes will give a counterexample, but rather389

that we need to check these values separately with more care.390

For this, we first make use of Lemma 2.2 to bound the number of funky edges for each set of391

possible values of x1, . . . , x5. In none of the cases we have to consider more than 6 funky edges.392

Then, we consider all locations these funky edges can be in. Each funky edge can be between any393

of the 10 pairs (Xi, Xj), giving us at most
(
9+k
k

)
choices for these pairs of k funky edges, and then394

we have to consider all possible incidences of the funky edges.395

Even if we were to reduce the number of such cases further through the use of symmetries, it396

would be very unpleasant for a human analysis. But is very easy with the help of the computer,397

even without any deeper analysis. The location of the funky edges completely determines the color398

of all edges between the Xi.399

We do not assign colors to the edges inside the Xi to keep the number of cases manageable.400

Instead, we count every set of 5 vertices that could induce a C5 given the right choice of colors401

inside the Xi, even if two such sets would require conflicting colors. We compare this count with402

the number of C5 in the iterated balanced blow-up of C5, and in all but one case, the iterated403

blow-up wins.404

The only remaining case is X1 = X2 = 3, X3 = X4 = X5 = 1, with a matching of three funky405

edges between X1 and X2, see Figure 5. This case counts 18 possible 5-cycles, 6 using one vertex406

from each Xi, and 12 using exactly 2 of the 3 funky edges. This is more than the balanced blow-up407

on 9 vertices, which contains 16 5-cycles. But here, we can use that the last 12 of the possible408

5-cycles in this case can be paired into 6 pairs with conflicting colors on the edges inside X1 and409

X2, so that at most one in each pair can actually be a 5-cycle. Therefore, no coloring of the 6 edges410

inside X1 and X2 can create more than 12 5-cycles.411

Figure 5: The final remaining case with X1 = X2 = 3, X3 = X4 = X5 = 1. Only red edges known
to be there are shown.

Case 2. n ≥ 1000:412

As we are dealing with infinitely many values of n, we first establish a common bound for C(G∗)413

for all n ≥ 1000.414

Proposition 2.7. For n ≥ 1000, C(G∗) > 0.0384609.415

Proof. Since we know that C(H) ≥ C(n) and thus C(G∗) ≥ C(n∗), it suffices to bound C(n∗) >416
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0.0384609 for n ≥ 1000. Note that from C(n) ≥ 1
26 , it follows that417

C(n∗) >
(n− 1)(n− 2)(n− 3)(n− 4)

n4
C(n) ≥ (n− 1)(n− 2)(n− 3)(n− 4)

26n4
.418

For n ≥ 610000, this quantity is larger than 0.0384609, so one way to show the proposition is to419

explicitly calculate C(n∗) for all n ≤ 610000, and then use this observation.420

At this point violating our philosophy of not arguing facts by hand that can easily be checked421

by the computer, we give a slightly less computational proof. We only check that the claim is422

true for n ≤ 5000 by explicit computation, and then argue by induction. Let n ≥ 1000, and423

C = min{C(n∗), C((n+ 1)∗)}, then for 0 ≤ i ≤ 4,424

C((5n+ i)∗) = 120

(
n

5n+ i

)5−i( n+ 1

5n+ i

)i
+

(5− i)n
5n+ i

(
n

5n+ i

)4

C(n∗)425

+
i(n+ 1)

5n+ i

(
n+ 1

5n+ i

)4

C((n+ 1)∗)426

≥ 120

(
n

5n+ i

)5−i( n+ 1

5n+ i

)i
+

(
n

5n+ i

)4

C427

≥
(

1

5n+ i

)5 (
120(n5 + in4) + (5n5 + in4)C

)
428

>

(
n

5n+ i

)5(
120 + 5C + 120

i

n

)
.429

430

Now for n = 1000, 0 ≤ i ≤ 4 this value is larger than 0.0384609. We also know that,431

δ

δn

(
n

5n+ i

)5(
120 + 5C + 120

i

n

)
= 5in3

5Cn+ 96i

(5n+ i)6
> 0.432

Therefore, as for fixed i we know that C((5n + i)∗) is increasing with respect to n, and since433

C(n∗) > 0.0384609 for 1000 ≤ n ≤ 5000, we have the desired result.434

Case 2.1. d ≤ 0.2:435

We first assume that d, the normalized average funky degree sum of funky edges, is small. We436

use the same process as before, where we flip all funky edges and then compare the number of437

5-cycles.438

Consider the following program (P ′) with C = 0.0384609 for any fixed d. It is derived from (P )439

by first dividing the objective function by f
(
n
2

)
n3, and then using n = 1000 or n → ∞ depending440

on which is yielding a lower objective function. Also, we skip the last step of balancing the parts441
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for an easier objective function. We account for this in Claim 2.8.442

(P′) :minimize443

y3y4y5 −
3

8
dy3y4 −

1

8
fy3 −

1

4
f

(
y1 + y2 +

1

2
(y3 + y4 + y5)

)
− 9

32
dy21 −

9

16× 1000
y21 (7)444

subject to445

5∑
i=1

yi = 1, (8)446

∑
1≤i<j≤5

yiyj − f
1000− 1

2× 1000
≥ 2(−0.175431374077117 + 8.75407592662244C)

21C
, (9)447

f > 0,448

yi ≥ yi+1 ≥ 0 for i ∈ {1, . . . , 4}. (10)449
450

The objective function (7) decreases for increasing d and f . Consequently, we fix d = 0.2. We know451

that f is maximized in (9) for y1 = y2 = y3 = y4 = y5 = 0.2, and we fix f at this maximum in (7).452

At the same time, the bound on the yi derived from (9) is weakest for f = 0, so we will use f = 0453

when applying this bound.454

This leaves us with a continuous cubic program in the four variables y1, y2, y3, y4, with dependent455

variable y5 = 1− y1 − y2 − y3 − y4. Instead of trying to solve this program, we discretize to find a456

lower bound greater than zero, the desired contradiction.457

For any grid point (t1, t2, t3, t4) and some ε > 0, we consider the cell
∏

[ti, ti+ε]. Note that this458

implies a range of [t5− 4ε, t5] for the size of the smallest part if we set t5 = 1− t1− t2− t3− t4. We459

check if the cell contains a point (y1, y2, y3, y4) satisfying (10). If this is the case, then we check if460

there may be a point (not necessarily the same) in the cell satisfying (9) by computing generously461

t5(1 − t5) +
∑

1≤i<j≤4(ti + ε)(tj + ε). If the answer is positive, we lower bound (7) in the box by462

computing463

(t3 + ε)(t4 + ε)(t5 − 4ε)− 3

8
d(t3 + ε)(t4 + ε)− 1

8
f(t3 + ε)464

−1

4
f

(
t1 + t2 +

1

2
(t3 + t4 + t5) + ε

)
− 9

32
d(t1 + ε)2 − 9

16000
(t1 + ε)2. (11)465

466

Every term in this sum but possibly the first is easily seen to be a lower bound for the corresponding467

term in (7) over all values of (y1, y2, y3, y4) in the cell. The first term is a lower bound over all468

values satisfying (10).469

To reduce the number of points to check, we include a few additional considerations. First, note470

that from (9), we can get the additional constraint that 0.166 ≤ yi ≤ 0.234. Secondly, rather than471

fixing some ε > 0 and checking all cells, we iteratively refine the mesh only where needed. This472

allows us to have a more refined search, as some cells in our feasible region will clearly produce473

positive objective values. We begin by initializing with a single cell with ti = 0.166 for i ∈ [4] and474

ε = 0.234− 0.166. Then every time when (11) evaluates to < 0.0001 (to allow for rounding errors),475

we halve ε and create 24 new points depending on whether ti remains the same or ti = ti + ε
2 .476

These 16 new cells are added to a stack. Cells in the stack are evaluated one by one, each time477

either removing it if (11) evaluates greater than 0.0001, or removing it and adding 16 new cells to478

the stack.479
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The program runs in a few minutes on a laptop, and makes around 1.8 ·106 calls to the objective480

function (11). Furthermore, the stack never contains more than 100 elements, meaning that we481

never have to iterate too far into one specific area of the feasible region. Note that with more482

computational effort, this program could also yield a contradiction for some larger value of d. But483

d = 0.2 more than suffices for the next case.484

Case 2.2. d > 0.2:485

We now show that we can not have d > 0.2 by looking at a single vertex with maximum funky486

degree. Let v be such a vertex with maximum funky degree df (v) = ∆f > 0.1n. Note that in487

the remainder of the proof all 5-cycles we consider contain v, and we will not point this out every488

time. We will use a rule to move v to one of the parts X1, . . . , X5, and flip all resulting funky edges489

incident to v to create a graph G1. We then bound the number of 5-cycles created and destroyed490

and show that we have more 5-cycles in G1, our desired contradiction. Without loss of generality491

assume that v ∈ X1 at the beginning.492

Let rin and bin be the numbers of red and blue neighbors of v in G in Xi, respectively. As493

the partition into the Xi maximizes the number of non-funky edges, moving v to some new part494

cannot increase this number. Therefore,495

r2 + b3 + b4 + r5 ≥ max{r1 + b2 + b3 + r4, r3 + b4 + b5 + r1, r4 + b5 + b1 + r2, r5 + b1 + b2 + r3}.496

Furthermore as f > 0.2,497

b2 + r3 + r4 + b5 =
df (v)

n
> 0.1.498

For some 1 ≤ i ≤ 5, move v to Xi, and flip all resulting funky edges incident to v after the499

move to create the graph G1. We bound the numbers of 5-cycles containing v in G and G1, and500

depending on these bounds we choose which Xi we move v to. As no edges from v to this Xi are501

flipped, the number of 5-cycles inside Xi is not affected by the flip. In G1, there are at least502

x1x2x3x4x5
xi

n4 − f
(
n

2

)
n2 max
|{i,j,`}|=3

xjx` (12)503

504

5-cycles which have at least one vertex outside of Xi. To see this, we simply pick one vertex for every505

single part not Xi. The only reason they would not form a C5 in G1 is if there was a funky edge506

between two of these four vertices. Every funky edge then destroys at most n2 max|{i,j,`}|=3 xjx`507

5-cycles of this form.508

We choose i to maximize (12), so let509

M1 := max
i

{
x1x2x3x4x5

xi
n4 − f

(
n

2

)
n2 max
|{i,j,`}|=3

xjx`

}
.510

That is, M1 is a lower bound on the number of 5-cycles not entirely in Xi in G1, and we wish511

to compare this to the number of 5-cycles in G. We first bound the number of 5-cycles in G in512

which all funky edges are incident to v. In particular, the remaining four vertices must induce a513

P4, so they must either all lie in the same Xj , or in four different Xjs. The number of such 5-cycles514

containing a vertex outside of Xi is thus at most515

M2 :=
(
r1b2b3r4 + r2b3b4r5 + r3b4b5r1 + r4b5b1r2 + r5b1b2r3 + 1

16(r22b
2
2 + r23b

2
3 + r24b

2
4 + r25b

2
5)
)
n4.516
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Let us now bound the number of 5-cycles in G containing a funky edge not incident to v. There517

are at most518

f

(
n

2

)
1

4
n2519

such cycles, as we can first pick some funky edge, and then select two other vertices (see Lemma 2.3).520

This however over counts all cycles which contain more than one funky edge not incident to v. To521

get a better bound, we will now bound the number of cycles which contain exactly one funky edge522

uw not incident to v. There are ten different cases depending on the location of uw. Since all cases523

are symmetric by rotation or a color switch, we only have to analyze one case in detail.524

Let us assume that u ∈ X1, w ∈ X2, so uw is a blue funky edge. Let x, y be the remaining 2525

vertices of a C5. There are three cases depending on the colors of uv and vw (they cannot both be526

blue). If uv and vw are red, then xv and yv are blue, and we may assume (by symmetry) that xu527

and wy are the remaining two blue edges of the C5. Then x ∈ X1, y ∈ X2, or x ∈ X1, y ∈ X5, or528

x ∈ X3, y ∈ X2, as otherwise there would be more funky edges.529

If uv is blue and vw is red, then we may assume that vuwxyv is the blue C5. Then x ∈ X5, y ∈530

X2, or x ∈ X2, y ∈ X2. Finally, if uv is red and vw is blue, and vwuyxv is the blue C5, then531

x ∈ X1, y ∈ X3, or x ∈ X1, y ∈ X1. Altogether, the number of 5-cycles containing {u, v, w} and no532

other funky edge not incident to v is at most533

max{b1b2 + b1b5 + b3b2, r5b2 + r2b2, b1r3 + b1r1}n2.534

With ten choices for the sets of {u,w}, this maximum is extended to a maximum of 30 terms:535

M3 := max



b1b2 + b1b5 + b3b2, r5b2 + r2b2, b1r3 + b1r1,

b2b3 + b2b1 + b4b3, r1b3 + r3b3, b2r4 + b2r2,

b3b4 + b3b2 + b5b4, r2b4 + r4b4, b3r5 + b3r3,

b4b5 + b4b3 + b1b5, r3b5 + r5b5, b4r1 + b4r4,

b5b1 + b5b4 + b2b1, r4b1 + r1b1, b5r2 + b5r5,

r1r3 + r5r3 + r1r4, b4r3 + b3r3, b5r1 + b1r1,

r2r4 + r1r4 + r2r5, b5r4 + b4r4, b1r2 + b2r2,

r3r5 + r2r5 + r3r1, b1r5 + b5r5, b2r3 + b3r3,

r4r1 + r3r1 + r4r2, b2r1 + b1r1, b3r4 + b4r4,

r5r2 + r4r2 + r5r3, b3r2 + b2r2, b4r5 + b5r5



.536

Therefore, we get the following upper bound for the number of 5-cycles containing a funky edge537

not incident to v after we adjust for double counts:538

f

(
n

2

)
n2

1

2

(
1

4
−M3

)
+M3f

(
n

2

)
n2. (13)539

The first term bounds cycles with more than one funky edge not adjacent to v, where the 1
2 comes540

from the fact that f
(
n
2

)
n2 at least double counts these 5-cycles. The second term bounds the541

number of 5-cycles with exactly one funky edge not adjacent to v. We then create a mathematical542

program (P ′′), we wish to lower bound, with (13) as our objective function. We also include the543

same bounds coming from Lemma 2.2 as well.544
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(P′′) :minimize545

n−4
(
M1 −M2 −

(
1

8
+

1

2
M3

)
f

(
n

2

)
n2
)

546

subject to547

5∑
i=1

xi = 1,548

xi = ri + bi,549 ∑
1≤i<j≤5

xixj − f
n− 1

2n
≥ 2(−0.175431374077117 + 8.75407592662244C)

21C
,550

f > 0551

ri, bi ≥ 0 for i ∈ {1, . . . , 4}.552

553
554

The factor of n−4 in the objective function is for normalization, and cancels many terms.555

We fix f at its maximum of 2000
999

(
10× 0.22 − 2(−0.175431374077117+8.75407592662244C)

21C

)
. The objective556

function grows with n, so we fix n = 1000.557

Similar to how we solved (P ′), we cover the feasible region by an ε-grid in the nine variables558

x2, x3, x4, x5, r1, r2, r3, r4, r5 with dependent variables x1, b1, b2, b3, b4, b5, and replace every variable559

in each term of the function by its maximum or minimum in each grid cell to bound the function. We560

also introduce the same constraints of 0.166 ≤ xi ≤ 0.234 as in (P ′) to help speed up computation.561

We then use the same technique of reducing ε by a factor of 1
2 each iteration, creating now 29 new562

cells for the independent variables. It turns out that (P ′′) requires even less computation than (P ′)563

running in less than a minute with fewer than 1, 000 calls to the objective function, despite the fact564

that the discretization creates more cells at each iteration.565

This proves that there are no funky edges, so G is a blow-up of C5. It remains to show that the566

blow-up is balanced, then Theorem 1.4 follows by induction.567

Claim 2.8. The extremal graph G is a balanced blow-up of C5.568

Proof. We proceed by induction on n. We assume the statement is true for all smaller values. Then569

the number of 5-cycles in an iterated blow-up with parts of sizes n1, n2, n3, n4, n5 is at most570

n1n2n3n4n5 + C(n1)

(
n1
5

)
+ C(n2)

(
n2
5

)
+ C(n3)

(
n3
5

)
+ C(n4)

(
n4
5

)
+ C(n5)

(
n5
5

)
.571

As this quantity is symmetric in the ni, we may assume from now on that n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5.572

For n ≤ 1000, we explicitly compute these quantities for all partitions n = n1 + n2 + n3 + n4 + n5,573

and verify that the lemma is true.574

For n > 1000, assume that n1 − n5 ≥ 2. Note that (9) again implies that 0.166n ≤ n5 < n1 ≤575

0.234n. Let v ∈ X1 where the number of 5-cycles Cv5 containing v is minimized over the vertices in576

X1. Let w ∈ X5 where the number of 5-cycles Cw5 containing w is maximized over the vertices in577

X5. The number of 5-cycles containing both v and w is n2n3n4. If Cw5 − n2n3n4 −Cv5 > 0, we can578

increase the number of 5-cycles by replacing v by a copy of w, contradicting the extremality of G.579
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As C(n) is non-increasing, we have580

0.04086 ≥ C(166) ≥ C(n5) ≥ C(n1).581

Therefore, we have582

Cw5 − n2n3n4 − Cv5 ≥
C(n5)

(
n5

5

)
n5

+ n1n2n3n4 − n2n3n4 −
C(n1)

(
n1

5

)
n1

− n2n3n4n5583

=
C(n5)

(
n5−1
4

)
− C(n1)

(
n1−1
4

)
5

+ (n1 − n5 − 1)n2n3n4584

≥
C(n5)

((
n5−1
4

)
−
(
n1−1
4

))
5

+ (n1 − n5 − 1)n35585

≥
C(166)

(
n45 − n41

)
5!

+ (n1 − n5 − 1)n35586

=
C(166)

5!
(n5 − n1)

(
n35 + n25n1 + n5n

2
1 + n31

)
+ (n1 − n5 − 1)n35587

≥ 4C(166)

5!
(n5 − n1)n31 +

1

2
(n1 − n5)n35588

=
1

2
(n1 − n5)

(
n35 −

8C(166)

5!
n31

)
589

≥
(

0.1663 − 8C(166)

5!
0.2343

)
n3590

> 0,591
592

a contradiction.593

This proves Theorem 1.4.594

3 Proof of Lemma 2.1595

We use flag algebras to show a slightly stronger statement that every sufficiently large graph G596

with C(G) ≥ 0.03 satisfies597

C••(G) ≥ −0.175431374077117 + 8.75407592662244C(G).598

This type of inequality was used by Lidický and Pfender [17] when solving the Pentagon problem599

of Erdős for small graphs. The flag algebra method has been developed by Razborov [22], and has600

seen numerous applications such as [1,7,8,12,13,15,20]. We assume the reader is familiar with the601

method and describe only a brief outline of the calculation rather than developing the entire theory602

and terminology. A description of the method when applied to graphs is available from several603

sources [3, 20]. The calculation is computer assisted, and the program we used can be downloaded604

from the arXiv version of this paper or https://lidicky.name/pub/c5frac.605

Let ϕ correspond to a convergent sequence of graphs (Gi)i>0. For a graph H we denote by606

ϕ(H) the limit of densities of H in Gi as i tends to infinity. Since ϕ is actually a homomorphism607
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to R, it naturally extends to formal linear combinations of graphs. The following inequalities are608

satisfied for any ϕ and ` ≥ 7.609

ϕ(C••) = ϕ

∑
F∈F`

cFF

 =
∑
F∈F`

cFϕ(F )610

0 ≥
∑
F∈F`

−aFϕ(F )611

0 ≥ −ϕ

(∑
σ

JxTσMσxσKσ

)
= −

∑
F∈F`

eFϕ(F )612

613

where F` are all graphs on ` vertices up to isomorphism, cF is the sum of densities of graphs in C••614

in F , aF is any non-negative real number, σ is a type, xσ is a vector of σ-flags, Mσ is a positive615

semidefinite matrix, J.Kσ is the unlabeling operator, and eF are some real coefficients depending on616

F , xσ, and Mσ. We also add the following constraint617

0 ≥ s(0.03− ϕ(C5)) = 0.03 · s−
∑
F∈F`

sbFϕ(F ),618

where s is a positive real number and bF is the density of C5 in F . Combining all inequalities, and619

using
∑

F∈F`
ϕ(F ) = 1 gives620

ϕ(C••) ≥
∑
F∈F`

(cF − aF − eF − sbF )ϕ(F ) + 0.03 · s621

≥ min
F∈F`

(cF − aF − eF − sbF )

∑
F∈F`

ϕ(F )

+ 0.03 · s622

= min
F∈F`

(cF − aF − eF − sbF ) + 0.03 · s.623

624

Notice that the expression depends on positive semidefinite matrices Mσ and the value of s. We625

may optimize this lower bound using semidefinite programming software.626

We use CSDP [5] and ` = 8, and obtain a numerical solution. We round the numerical solution627

to an exact rational solution using SageMath [23] and obtain the following:628

ϕ(C••) ≥ − 175431374077116112876105446118032690611106

1000000000000000000000000000000000000000000
629

+ 0.03 · 8754075926622441195046069111932573299245056

1000000000000000000000000000000000000000000
630

> − 0.175431374077117 + 0.03 · 8.75407592662244.631
632

Notice that the lower bound does not depend on ϕ. The only requirement was that ϕ(C5) ≥ 0.03633

and 0.03 appears separately in the solution. Hence, replacing 0.03 by the density of C5 gives a634

valid bound for all ϕ(C5) ≥ 0.03. Note further that the numerical approximation is strictly smaller635

than the rational solution. This makes the result valid for every sufficiently large graph G, since636

flag algebra calculations on graphs instead of graph limits have error o(1) = O( 1
n), where n is the637

number of vertices of G.638
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4 Further Directions639

As mentioned above, we know that C6 and the net N on 6 vertices have (F3). For N , we know that640

it does not have (F5) as, similarly to C5, there is a small extremal graph which is not a blow-up of641

N . For C6, we are not aware of such an example, and our methods may be successful here.642

As another direction, the notion of fractalizers directly translates to directed graphs. It is easy643

to direct the edges in an iterated balanced blow-up of C5 so that every induced copy of C5 becomes644

a directed ~C5. This is not possible for the Möbius ladder on 8 vertices, so we get the following645

theorem as an immediate corollary of Theorem 1.4.646

Theorem 4.1. ~C5 is a fractalizer.647

From related unpublished work [14], we know that ~C4 also has (F3), and we conjecture that it648

in fact fractalizes.649

Conjecture 4.2. For all k ≥ 4, ~Ck is a fractalizer.650

For ~C3, the iterated balanced blow-up asymptotically achieves the maximum number of ~C3.651

Nevertheless, for many values of n, it fails to be extremal. This stems from the folklore fact that652

the number of ~C3 is maximized if and only if the graph is a regular (or near regular for even n)653

tournament. For an infinite number of values of n, including all values of the form n = 6k± 1, the654

iterated balanced blow-up of ~C3 has vertices which differ in out-degree by at least 2. So ~C3 has655

(F1) but not (F2).656
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[20] O. Pikhurko, J. Sliačan, and K. Tyros. Strong forms of stability from flag algebra calculations.697

J. Combin. Theory Ser. B, 135:129–178, 2019.698

[21] N. Pippenger and M. C. Golumbic. The inducibility of graphs. J. Combin. Theory Ser. B,699

19(3):189–203, 1975.700

[22] A. A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–1282, 2007.701

[23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1), 2020.702

https://www.sagemath.org.703

[24] R. Yuster. On the exact maximum induced density of almost all graphs and their inducibility.704

J. Combin. Theory Ser. B, 136:81–109, 2019.705

23

http://www.birs.ca/events/2015/5-day-workshops/15w5008/videos/watch/201508240900-Fox.html
http://www.birs.ca/events/2015/5-day-workshops/15w5008/videos/watch/201508240900-Fox.html
http://www.birs.ca/events/2015/5-day-workshops/15w5008/videos/watch/201508240900-Fox.html


5 Appendix706

The following is a list of the 23 different values of x1, . . . , x5 such that program (P ) has a negative707

objective value. Note that (P ) produces values for y1, . . . , y5, which may have a different ordering708

than x1, . . . , x5. We therefore list all possible values of x1, . . . , x5 based on each y1, . . . , y5, up to709

isomorphism.710

711

(1,1,1,3,3) (1,3,1,1,3) (1,1,2,2,3) (1,2,3,2,1) (1,2,3,1,2) (1,2,2,1,3) (1,2,2,2,2) (2,2,2,2,3) (2,2,2,2,4)712

(2,2,2,3,3) (2,3,2,2,3) (1,3,3,3,3) (2,2,2,3,4) (2,2,3,3,3) (2,3,2,3,3) (2,3,3,3,3) (3,3,3,3,4) (3,3,3,4,4)713

(3,4,3,3,4) (3,3,4,4,4) (3,4,3,4,4) (4,4,4,5,5) (4,5,4,4,5)714
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