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Abstract

We determine the inducibility of all tournaments with at most 4 vertices together with the
extremal constructions. The 4-vertex tournament containing an oriented C3 and one source
vertex has a particularly interesting extremal construction. It is an unbalanced blow-up of an
edge, where the sink vertex is replaced by a quasi-random tournament and the source vertex is
iteratively replaced by a copy of the construction itself.

1 Introduction
One of the central questions in extremal graph theory is to maximize the number of induced copies
of a given graph H in a larger host graph on a fixed number of vertices. For a graph G, we denote
the number of vertices by |H|. For this, let I(H,G) be the number of vertex subsets of G which
induce a graph isomorphic to H, and let

I(H,n) = max
|G|=n

I(H,G).

For k = |H|, we normalize the answer and write i(H,n)
(n

k

)
= I(H,n). Clearly, 0≤ i(H,n)≤ 1, so

we can think of i(H,n) as a subgraph density. An easy averaging argument shows that i(H,n) is
monotone non-increasing and thus converging for n→∞. Pippenger and Golumbic [21] define the
inducibility of H as

i(H) = lim
n→∞

i(H,n).

Determining inducibilities is notoriously difficult, and the answer is known only for very few
explicit graphs H. A major breakthrough for the problem was the introduction of the flag algebra
method by Razborov [22] in 2007, and since then the inducibility of a good number of small
graphs has been determined with the help of this method [1, 2, 7]. Nevertheless, we do not even
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know i(P4), i.e. the inducibility of the path on four vertices, and we do not even have a conjecture
for the answer.

On the other end of the spectrum, Fox, Huang, and Lee [9], and independently Yuster [23], have
determined exact values for i(H,n) and thus i(H) for all n and almost all large enough graphs H
by studying random graphs. There are numerous other results on inducibility [3, 6, 10–12, 16–19].

All of these questions can be studied for directed graphs as well. Falgas-Ravry and Vaughan [8]
studied inducibility of small outstars. Huang [15] extended the result to all outstars. This was fur-
ther generalized to other stars by Hu, Ma, Norin, and Wu [14]. Short paths with further restrictions
were considered in [4] and orientation of a 4-cycle in [13]. In an REU in 2018, Burgher and
Burke studied and conjectured extremal constructions for most oriented graphs (directed graphs
without 2-cycles) of up to 4 vertices using the flag algebra method. In a similar and independent
project, Bożyk, Grzesik and Kielak [24] established more bounds and found more constructions
for oriented graphs.

In this paper, we look closer at the tournaments in this list, directed graphs with exactly one
arc between any pair of vertices. The number of non-isomorphic tournaments on k vertices is
slightly smaller than the number of graphs, and flag algebra computations tend to have similar
power. The two projects mentioned in the previous paragraph both found inducibility bounds and
closely matching constructions for all tournaments on up to 4 vertices, where the results are easy
or trivial for all but three of these 8 small tournaments. These last three tournaments on 4 vertices
have very interesting constructions, and in this paper we prove that these constructions are indeed
optimal.

When edges are colored, Mubayi and Razborov [20] showed that for every tournament T on
k ≥ 4 vertices whose edges are colored by

(k
2

)
distinct colors, a structure on n ≥ k vertices that

maximizes the number of copies of T is a balanced iterated blow-up of T . This implies that
i(T ) = k!

kk−k in this rainbow setting.

2 Results
Here we discuss tournaments on at most four vertices. For the tournaments T1 and T2 on one
and two vertices, respectively, any tournament T has i(Tk,T ) = 1. Similarly, for all transitive
tournaments T Tk on k ≥ 3 vertices, the transitive tournament T Tn on n ≥ k vertices is the unique
tournament on n vertices with i(T Tk,T ) = 1. On the other hand, i(T T3,T ) is minimized exactly
if T has all out-degrees in {n−2

2 , n−1
2 , n

2}. This easily follows from counting T T3 by first choosing
the source vertex, and then any two out-neighbors. As a consequence, we have for the only other
tournament on three vertices C3:

Proposition 1. The number of induced copies of C3 is maximized if and only if every vertex of a
tournament has out-degree in {n−2

2 , n−1
2 , n

2}.

This implies i(C3) = 1/4 and leaves us with three 4-vertex tournaments to consider, see Fig-
ure 1: the tournaments we get from C3 by adding a source vertex (C+

3 ), a sink vertex (C−3 ), and by
adding a vertex of out-degree 1 or 2 (C4).

We will now define the class Cn of carousels on n≥ 3 vertices. A tournament T is in Cn if its
vertices can be labeled {v1,v2, . . . ,vn} such that viv j ∈ E(T ) if 0 < j− i < n

2 or if−n < j− i <−n
2 .
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T T4 C+
3 C−3 C4

Figure 1: The four 4-vertex tournaments.

v

N−(v) N+(v)

TransitiveTransitive

Figure 2: For odd n, the carousel C ∈ Cn is unique and vertex transitive. In the even n case, an
additional vertex v′ would be placed opposite v on the circle with the arc containing v and v′ chosen
arbitrarily.

Said another way, a tournament T is in Cn if for every x ∈V (T ), the in- and out-neighborhoods in-
duce transitive tournaments (T is locally transitive) and are as balanced as possible (T is balanced
when |V (T )| is odd, or nearly balanced when |V (T )| is even). See Figure 2 for an illustration.

Observe that for odd n and for n = 4, Cn contains exactly one tournament, and we will call
this unique carousel Cn. For even n≥ 6, Cn contains more than one tournament, depending on the
directions of the arcs vivi+ n

2
. For even n, we denote by Cn ∈ Cn the unique tournament we get from

deleting one vertex in Cn+1. Note that one can alternatively construct Cn from Cn−1 by duplicating
one vertex.

Theorem 2. For n≥ 4, the tournaments maximizing I(C4,T ) are precisely the tournaments in Cn.
Consequently, i(C4) =

1
2 , and for every n, we have

I(C4,n) =

{
n(n2−1)(n−3)

48 if n is odd,
n(n2−4)(n−3)

48 if n is even.
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Tn

Hn = Tαn

Hαn Lαn

Ln

Random, (1−α)n

Figure 3: Construction maximizing the number of copies of C+
3 . For α ∈ [0,1] and n sufficiently

large, the extremal construction Tn can be decomposed into subtournaments Ln, of size about (1−
α)n, and Hn, of size about αn with the properties shown above.

Note that the asymptotic statement that i(C4) =
1
2 is also proved in [24], with a proof very

similar to the one we provide in the next section. Flag algebra computations indicate that a similar
statement is also true for C5, C6, C7 and C8, and we conjecture it is true for all k. Observe that
for k ≥ 5 and even n ≥ k, Cn contains more copies of Ck than the other members of Cn, so our
conjectured class of extremal tournaments is a bit smaller here.

Conjecture 3. For all k ≥ 5 and n ≥ k, the unique n-vertex tournaments maximizing I(Ck,T ) are
the tournaments Cn.

The only tournaments on 4 vertices left are the two tournaments C−3 and C+
3 . As one gets C−3

from C+
3 by reversal of all arcs, the tournaments extremal for C−3 are precisely the reversals of the

tournaments extremal for C+
3 , so it suffices to only study C+

3 . Consider the following construction
of a tournament Tn on n vertices. For some fixed α ∈ (0,1), partition the vertices into two sets Hn
(for high out-degree) and Ln (for low out-degree) of size dαne and b(1−α)nc, respectively. On
the set Ln, direct the edges uniformly at random, i.e. insert a random tournament Rb(1−α)nc. All
arcs between the sets are directed from Hn to Ln. On the set Hn, iterate the construction, i.e. insert
the tournament Tdαne inductively. See Figure 3 for a sketch of the iterated construction.

In this construction, all copies of C+
3 lie completely in Hn, completely in Ln, or have exactly

one vertex in Hn and three vertices forming a C3 in Ln. Notice that i(C3,Rb(1−α)nc) = 1/4+ o(1)
and i(C+

3 ,Rb(1−α)nc) = 1/8+o(1). As i(C+
3 ,Tdαne) = i(C+

3 ,Tn)+o(1), we have

i(C+
3 ,Tn) = α

4i(C+
3 ,Tn)+4α(1−α)3i(C3,Rb(1−α)nc)+(1−α)4i(C+

3 ,Rb(1−α)nc)+o(1)

= α
4i(C+

3 ,Tn)+4α(1−α)3 1
4 +(1−α)4 1

8 +o(1),

so

i(C+
3 ,Tn) =

α(1−α)3 + 1
8(1−α)4

1−α4 +o(1).
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Maximizing this quantity gives us α = 1
5(2

3
√

9−2− 3
√

3)≈ 0.1435836, and

i(C+
3 ,Tn) =

1
8

(
8−9 3

√
3+3 3

√
9
)
+o(1)≈ 0.1575006670+o(1).

We show that all large extremal tournaments for C+
3 essentially look this way, and that the limit

object is unique.

Theorem 4. Let (Tn)
∞
n=1 be a sequence of tournaments on n vertices with I(C+

3 ,Tn) = I(C+
3 ,n).

Let α = 1
5(2

3
√

9−2− 3
√

3). For sufficiently large n, the vertex set of Tn can be partitioned into sets
Ln and Hn so that |Hn|= αn+o(1), all arcs between these sets are from Hn to Ln, the sequence of
tournaments (Tn[Ln])

∞
n=1 is quasi-random, and I(C+

3 ,Tn[Hn]) = I(C+
3 , |Hn|). Hence

i(C+
3 ) =

1
8

(
8−9 3

√
3+3 3

√
9
)
≈ 0.1575006670.

This construction is also mentioned in [24], together with an almost matching upper bound
obtained by the flag algebra method. While C+

3 may not be the most interesting tournament to
consider, we find this extremal construction combining quasi-random parts with iterated blow-ups
fascinating.

3 Proof of Theorem 2
Proof of Theorem 2. We begin by observing the following identity for all tournaments T on at least
4 vertices:

i(C3,T ) = 1
2 i(C4,T )+ 1

4 i(C+
3 ,T )+

1
4 i(C−3 ,T ). (1)

This follows from the fact that the probability to find a C3 when picking three vertices at random is
equal to the probability to first find C4, C+

3 , or C−3 when picking four vertices, times the appropriate
probability that removing one of these vertices leaves a C3.

Multiplying both sides by
(n

4

)
, we can express this relationship in terms of a direct count of

induced C4 for any tournament T :

I(C3,T ) · n−3
4 = 1

2 I(C4,T )+ 1
4(I(C

+
3 ,T )+ I(C−3 ,T )),

implying that

I(C4,T ) = I(C3,T ) · n−3
2 −

1
2(I(C

+
3 ,T )+ I(C−3 ,T )).

Let T ∈ Cn. Then every vertex in T has out-degree in {n−2
2 , n−1

2 , n
2}, so by Proposition 1,

I(C3,T ) is maximized. On the other hand, the out-neighborhoods and in-neighborhoods of all ver-
tices in T induce transitive tournaments, so I(C+

3 ,T ) = I(C−3 ,T ) = 0. This shows that T maximizes
I(C4,T ).

It remains to show that no other tournament shares this property. For this, let T be any
{C+

3 ,C
−
3 }-free, (near) regular tournament, and let v1 ∈ V (T ) with d+(v1) = k ∈ {n−2

2 , n−1
2 , n

2}.
As T is C+

3 -free, the out-neighborhood of v1 is C3-free and therefore transitive, and we may rela-
bel the out-neighbors in this induced order as {v2,v3, . . . ,vk+1}. Similarly, the in-neighborhood is
transitive, and we may relabel it in the induced order as {vk+2, . . . ,vn}.

Now suppose, for the sake of contradiction, that T /∈ Cn, and thus there exists an arc viv j with
0 < i− j < n

2 or if−n < i− j <−n
2 . Let us first assume that 0 < i− j < n

2 . As {v2,v3, . . . ,vk+1} and
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{vk+2, . . . ,vn} are transitively ordered, we have j ≤ k and i ≥ k+1. As v j has out-degree at least
n−1

2 , v j has an out-neighbor vi′ with i′> i, implying that vivi′ ∈E(T ). But now T [v1,v j,vi,vi′]'C+
3 ,

a contradiction.
Let us now assume that −n < i− j < −n

2 , and so i ≤ k and j > k. Similarly as before, there
now exists a j′ with k < j′ < j and v j′vi ∈ E, which again implies that T [v1,vi,v j′,v j] ' C+

3 , a
contradiction proving the theorem.

4 Proof of Theorem 4
Proof of Theorem 4. We start with an upper bound for the inducibility of C+

3 using standard flag
algebra methods. Notice that the upper bound is not sharp, which is common for extremal con-
structions involving iterations. We will always assume that n is large enough that we are allowed
to suppress lower order terms in our computations.

Claim 4.1. i(C+
3 ,n) ∈ (0.157500667,0.157500672).

Proof. We know that i(C+
3 ,n)> 0.157500667 by our construction. Using standard plain flag alge-

bra techniques, we find that

i(C+
3 )≤

22050094023517191892318610820045970412528560
140000000000000000000000000000000000000000000

< 0.157500672.

Certificates are too large to be presented here, and do not add much insight. They can be found at
http://lidicky.name/pub/tournaments.

Next, a standard symmetrization argument gives that every vertex is in roughly the same num-
ber of C+

3 . Recall that (Tn)
∞
n=1 is a sequence of tournaments on n vertices with I(C+

3 ,Tn)= I(C+
3 ,n).

Claim 4.2. Every vertex is in i(C+
3 ,Tn)

(n−1
3

)
+O(n2) many copies of C+

3 .

Proof. By definition, the average number of copies a vertex is in is i(C+
3 ,Tn)

(n−1
3

)
. Let v be a

vertex which is in the fewest copies C+
3 (v), and let w be a vertex which is in the most copies

C+
3 (w). Let C+

3 (vw) be the number of copies containing both v and w. If we delete v, and add a
copy of w, we gain

C+
3 (w)−C+

3 (v)−C+
3 (vw)

copies of C+
3 . As Tn is extremal, this quantity must be non-positive. Observing that C+

3 (vw) =
O(n2) shows the claim.

The traditional way to extract structure from flag algebra computations giving sharp bounds
is to look for subgraphs, for which the computations tell you that they have zero density in every
extremal construction. If the computations do not give sharp bounds like here, another approach
is to do the opposite, and to compute bounds on subgraphs which occur with high density. Neither
of these approaches has much promise in this problem. As a large part of the conjectured extremal
tournament is quasi-random, all subgraphs appear with a fairly moderate frequency.

Inspired by the conjectured extremal tournament, we are looking for other features. A first
observation is that the degree distribution is concentrated around a few values. All vertices in Ln
have about the same fairly small out-degree, and all vertices in Hn have very large out-degree. A
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second observation is that all arcs between Ln and Hn are directed from Hn to Ln. We use flag
algebra computations to prove that these two observations are true in every extremal tournament,
and from this we are able to prove the theorem.

Let deg(x) be the normalized out-degree distribution function for an extremal tournament Tn:

deg(x) = 1
n

∣∣{v ∈V (T ) : d+(v) = xn}
∣∣ .

For the remainder of the proof, “normalized” will be suppressed for simplicity. To make our
computations more intuitive to follow, we will often denote the quantity i(H,Tn) by a picture of
the graph H, so we might write

= i(C+
3 ,Tn).

We now show that Tn has a degree distribution similar to the conjectured example.

Claim 4.3. For all x ∈ [0,0.416]∪ [0.44057,0.8849], deg(x) = 0.

Proof. We prove this claim by showing three bounds. First we investigate vertices v with d+(v)≤
0.85n and obtain lower and upper bounds on d+(v), namely that d+(v)∈ (0.416,0.44057). For the
third bound, we switch to vertices v with d+(v)≥ 0.85n and show that actually d+(v)> 0.8849n.

We begin with the lower bound of the support of deg(x). Fix some vertex v ∈ V (Tn) and
color all vertices in N+(v) black and color N−(v) white. We will use flag algebras to bound the
proportion of black vertices in Tn− v, and to this end we begin setting up a program that can be
bounded by the plain flag algebra method. Since i(C+

3 ,Tn− v) > 0.157500667, we know the sum
of the densities of all 2-colorings of C+

3 is at least 0.157500667. Since all vertices in V (Tn)\v
are colored, we have + = 1. We reduce our search space with the constraint that ≤ 0.85,
interpreted as v having normalized out-degree at most 0.85.

Ignoring lower order terms, we also know that every vertex is in the same number of C+
3 (see

Claim 4.2), so we can add an additional constraint to reflect this fact. If v plays the role of the source
vertex in the C+

3 , then the remaining three vertices are all in N+(v) and induce a C3. Otherwise, v
plays the role of one of the vertices in the C3, and the other three vertices induce a transitive triangle
where the source and sink are in N−(v) and the last vertex is in N+(x). Our coloring scheme thus
allows us to include the final bound in the following program:

Objective:

minimize

Constraints:

≤ 0.85
+ = 1

0.157500667≤ + + + + + + +

0.157500667≤ +

From this program, we find that > 0.416. More precisely,

≥ 374513205377685397063529268488234341918782335394533100
900000000000000000000000000000000000000000000000000000

> 0.416.
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Similarly, we obtain < 0.44057, or more precisely that

≤ 396504577626701914630036949179105848845764101947535900
900000000000000000000000000000000000000000000000000000

< 0.44057,

from the following program:

Objective:

maximize

Constraints:

≤ 0.85
+ = 1

0.157500667≤ + + + + + + +

0.157500667≤ +

These two results imply that for large enough n, no vertices have normalized out-degree in
[0,0.416]∪ [0.44057,0.85]. We extend this result with the following program restricting the degree
of large out-degree vertices:

Objective:

minimize

Constraints:

≥ 0.85
+ = 1

0.157500667≤ + + + + + + +

0.157500667≤ +

This program outputs the lower bound > 0.8849, completing the proof of this claim. More
precisely, it gives

≥ 796434927922041149520351194696218603042290321628262400
900000000000000000000000000000000000000000000000000000

> 0.88492769769.

All certificates can be found at http://lidicky.name/pub/tournaments.

Let Hn be the set of vertices in Tn with normalized out-degree in (0.8849,1], and Ln be the set of
vertices with normalized out-degree in (0.416,0.44057). The above claim implies that Hn∪Ln =
V (Tn). We now show that no arcs in Tn are directed from Ln to Hn, once again using a coloring-
scheme to acquire localized information in an extremal construction.

Claim 4.4. For every x ∈ Ln and y ∈ Hn, yx ∈ E(Tn).
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Proof. Let x ∈ Ln, y ∈ Hn, so x has normalized out degree in [0.415,0.441] and y has normalized
out-degree at least 0.8849. We color V (Tn)− {x,y} with the following scheme, in which the
top color represents the relation to x, and the bottom color represents the relation to y (see also
Figure 4):

• Assign color black-black to N+(x)∩N+(y),

• Assign color black-white to N+(x)∩N−(y),

• Assign color white-black to N−(x)∩N+(y),

• Assign color white-white to N−(x)∩N−(y).

x

y

Figure 4: Four-coloring scheme for Tn−{x,y}
.

In order to model the out-degree assumptions, we will use the following constraints:

0.416≤ + ≤ 0.44057 and 0.8849≤ + .

As in the proof of Claim 4.3, any programs involving this color scheme can include a constraint to
ensure that x is in the right number of C+

3 with vertices in V (Tn)\y, and that y is in the right number
of C+

3 with vertices in V (Tn)\x.
The purpose of this set up is to show that x→ y results in fewer C+

3 than y→ x, so we need
to determine how to construct C+

3 which include both of these vertices. For this, we look again at
Figure 4. If x→ y, we create a C+

3 with each arc and with each arc . On the other
hand, if y→ x, we create a C+

3 with each arc and with each arc .
Similarly as above, we can now pose the following program bounding the difference between

C+
3 containing x→ y and containing y→ x. Note that there are up to 96 different C+

3 in Tn−{x,y}
with 4 colors. Also, when counting the C+

3 in Tn−y containing x, we have to account for the colors
induced by the arcs with y.

Objective: maximize  +

−
 +

 .
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Constraints:

1 = + + +

0.416≤ + ≤ 0.44057
0.8849≤ +

0.157500667≤ sum of all 4-colorings of C+
3

0.157500667≤ + + + + +

+ + + + + +

0.157500667≤ + + + + +

+ + + + + +

We find that the solution to this program is bounded above by −0.0768:
−12010298512534724753083910770424420094143817
156250000000000000000000000000000000000000000

≈−0.076866,

implying that (y→ x) results in at least 0.0768 ·
(n

2

)
more copies of C+

3 than (x→ y) in Tn for
sufficiently large n, proving our claim. Certificates can be found at http://lidicky.name/pub/
tournaments.

Having determined the behavior of the relationship between Hn and Ln, we now focus on the
internal behavior of Hn. The following claim implies that, for large enough n, the overall structure
of Tn iterates into Hn.

Claim 4.5. I(C+
3 ,Tn[Hn]) = I(C+

3 , |Hn|).

Proof. The only copies of C+
3 in Tn are those chosen completely in Hn, completely in Ln, or with

precisely 1 vertex chosen from Hn. The arcs in Tn[H] impact neither the second nor third type of
C+

3 . Therefore, Tn[Hn] is extremal and the claim follows.

We next focus on showing that the sizes of Hn and Ln are correct.

Claim 4.6. |Ln|< 6
7n≈ 0.85714n.

Proof. First, since there are no arcs from Ln to Hn, the average out-degree of vertices in Ln is
|Ln|−1

2 , so
1
n |Ln| ∈ (0.832,0.88114).

We would like a tighter upper bound, so we pose the following program wherein we color the
vertices in Ln black and the vertices in Hn white. In this program, we assume that |Ln| ≥ 6

7n and
show that the density of C+

3 is then too small, implying the claim. We note as well that is a
forbidden subgraph by Claim 4.4, so we include this as a constraint in the program as well.

10
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Objective:

maximize + +

Constraints:

6/7≤ ≤ 0.88114
+ = 1

Forbidden Subgraph:

This program is bounded above by
141750254952413854395355025351649452032106400000000
900000000000000000000000000000000000000000000000000

< 0.15750003 < i(C+
3 ,Tn),

thus cannot be extremal, and so implies that Tn must satisfy |Ln|< 6
7n. Certificates can be found at

http://lidicky.name/pub/tournaments.

We next aim to prove that the sequence (Tn[Ln])
∞
n=1 is quasi-random. To do so we prove

Claim 4.7, a consequence of the characterization of quasi-random tournaments in (Chung and
Graham [5]). They list 11 different properties characterizing quasi-random tournaments, but we
will only use the first two.

P1 : Every tournament appears asymptotically with the same density as in the random tournament.

P2 : lim
n→∞

i(C4,Gn) =
3
8 .

Claim 4.7. A sequence of tournaments (Gn)
∞
n=1 with |G|= n is quasi-random if and only if

lim
n→∞

i(C3,Gn) =
1
4 and lim

n→∞
i(C+

3 ,Gn) =
1
8 .

Proof. The ”only if” statement follows immediately from property P1, so we concern ourselves
with proving the ”if” statement. Let (Gn)

∞
n=1 be a sequence of tournaments so that |Gn| = n,

and recall Proposition 1 that (near) regular tournaments are precisely those tournaments which
maximize the number of induced copies of C3.

So, assume that
lim
n→∞

i(C3,Gn) =
1
4 and lim

n→∞
i(C+

3 ,Gn) =
1
8 ,

and observe that the tournaments are tending towards regularity, i.e. there are n− o(n) vertices

11
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with out-degree n
2 +o(n). Now observe that

1
8

(
n
4

)
+o(n4) = I(C+

3 ,Gn)

= ∑
v∈V (Gn)

I(C3,Gn[N+(v)])

= ∑
v∈V (Gn)

i(C3,Gn[N+(v)])
(

n/2
3

)
+o(n3), by regularity

≤ ∑
v∈V (Gn)

1
4

(
n/2
3

)
+o(n3)

=
1
8

(
n
4

)
+o(n4).

This implies that i(C3,Gn[N+(v)]) = 1
4 + o(1) for all but at most o(n) vertices v ∈ V (Gn). This

equality also implies that i(T T4,Gn) =
3
8 +o(1). Now

1
4
+o(1) = i(C3,Gn) =

1
2

i(C4,Gn)+
1
4

i(C+
3 ,Gn)+

1
4

i(C−3 ,Gn),

1
4
+o(1) =

1
3

i(T T3,Gn) =
1
6

i(C4,Gn)+
1
4

i(C+
3 ,Gn)+

1
4

i(C−3 ,Gn)+
1
3

i(T T4,Gn),

so
o(1) = i(C3,Gn)−

1
3

i(T T3,Gn) =
1
3

i(C4,Gn)−
1
8
+o(1),

and thus i(C4,Gn) =
3
8 +o(1). This last statement is property P2 in [5] which is equivalent to (Gn)

being quasi-random.

Claim 4.8. In any tournament T on n vertices, i(C+
3 ,T )≤

1
8 +

2
3(

1
4 − i(C3,T ))+o(1).

Proof. Using flag algebras, we show

3i(C+
3 ,T )+2i(C3,T )≤

7
8
+o(1).

The claim follows by rearranging the inequality. Certificates can be found at http://lidicky.
name/pub/tournaments.

Claim 4.9. The sequence (Tn[Ln]) is quasi-random.

Proof. Let L = 1
n |Ln|. By Claim 4.5, i(C+

3 ,Tn[Hn]) = i(C+
3 ,Tn)+ o(1). Looking at the density of

the C+
3 which are not completely contained in Hn, we have, ignoring o(1) terms,

L4 1
8 +4(1−L)L3 1

4 ≤ (1− (1−L)4)i(C+
3 ,Tn)

= L4 · i(C+
3 ,Tn[Ln])+4(1−L)L3 · i(C3,Tn[Ln])

≤ L4 ·
(1

8 +
2
3(

1
4 − i(C3,Tn[Ln]))

)
+4(1−L)L3 · i(C3,Tn[Ln])

= 7
24L4 +L3i(C3,Tn[Ln])(4− 14

3 L)

≤ 7
24L4 +L3 1

4(4−
14
3 L) = L4 1

8 +4(1−L)L3 1
4 .
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The first inequality is true as the left side is the value we would expect if we replace Tn[Ln] by a
random tournament. The second inequality follows from Claim 4.8. For the last inequality, note
that 0 < L < 6

7 , and so the left side is maximized if and only if C3 is maximized at 1
4 . As the

first and the last term in this chain of inequalities are equal, we have equality throughout. Thus
i(C3,Tn[Ln]) =

1
4 and i(C+

3 ,Tn[Ln]) =
1
8 , proving the claim using Claim 4.7.

Claim 4.10. The normalized size of Ln is L = 1
5

(
7+ 3
√

3−2 3
√

9
)
+ o(1), and our conjectured

structure is the limit object for the inducibility of C+
3 .

Proof. We know that L < 6/7, that Tn[Ln] is quasi-random, that all arcs between Hn and Ln point
towards the vertex in Ln, and that i(C+

3 ,Tn[Hn]) = i(C+
3 ,Tn)+o(1). Thus,

i(C+
3 ,Tn) = L4 · 1

8
+

(
4
1

)
L3(1−L) · 1

4
+(1−L)4(i(C3,Tn)+o(1)).

This is maximized when i(C+
3 ,Tn) =

1
8

(
8−9 3

√
3+ 3√35

)
+o(1) and L = 1−α +o(1).

We have thus shown that every extremal tournament matches our construction, completing the
proof of this theorem.

5 Discussion
In this section, we discuss some of the peculiarities of this problem and its solutions, including
the novel strategies introduced in this paper. First and foremost, we know of no other inducibility
problem for which all extremal constructions include a quasi-random component as in the case of
C+

3 and C−3 and ask the following question:

Problem 1. For what classes of graphs (undirected or directed) do the extremal constructions for
the corresponding inducibility problem involve non-trivial quasi-random components?

For C+
3 , the extremal construction was conjectured by noting that our tournament can be de-

composed into a source vertex and a C3; described another way, we begin with an arc and blow up
the head into a C3. Essentially, we ask the following: for a digraph G = (V,E) with cut C = (S,T )
and cut-set of size |S| · |T |, for what structures G[S] and G[T ] does the resulting inducibility prob-
lem have as extremal solutions constructions for which α ·100% of the vertices induce a “typical
random graph structure” for some α ∈ (0,1)? Natural candidates for consideration would include
G[T ]∼=C3 and G[S] isomorphic to any 2-vertex digraph or 3-vertex tournament.

Historically, flag algebra techniques have been leveraged to determine bounds on global graph
densities. The models developed in Claims 4.3 and 4.4, however, resulted in bounds on local-
ized information. In the case of Claim 4.3, we were able to determine something very powerful
regarding the distribution of out-degrees in extremal constructions, namely that all vertices have
normalized out-degrees in a very specific set. In the case of Claim 4.4, we were able to determine
the direction of an arc between any pair of vertices which satisfy basic constraints related to their
out-degrees.

Finally, we want to make an observation about Conjecture 3. Let k ≥ 5 be odd, and let n > k.
Let X ⊂ V (Cn) be a set of k vertices such that Cn[X ] ∼= Ck. Observe that for every vertex v ∈

13



V (Cn)\X , we have Cn[X ∪{x}]∼=Ck+1. If we now express i(Ck,T ) in a tournament T in terms of
densities of (k+1)-vertex graphs similarly to (1), we can easily conclude that Conjecture 3 is true
for k+1 if it is true for k, so it suffices to prove it for all odd k. Standard flag algebra computations
show that Cn is o(n2) arc flips away from every extremal tournament for C5 and C7 (and thus for
C6 and C8 by this observation), but we have not seriously tried to show the full conjecture for these
cases.
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