
On tripartite common graphs

Andrzej Grzesik∗ Joonkyung Lee† Bernard Lidický‡ Jan Volec§
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Abstract

A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring
of the complete graph Kn is minimised by the random colouring. Burr and Rosta, extending
a famous conjecture by Erdős, conjectured that every graph is common. The conjectures by
Erdős and by Burr and Rosta were disproved by Thomason and by Sidorenko, respectively, in
the late 1980s. Collecting new examples for common graphs had not seen much progress since
then, although very recently, a few more graphs are verified to be common by the flag algebra
method or the recent progress on Sidorenko’s conjecture.

Our contribution here is to give a new class of tripartite common graphs. The first example
class is so-called triangle-trees, which generalises two theorems by Sidorenko and answers a ques-
tion by Jagger, Št’ov́ıček, and Thomason from 1996. We also prove that, somewhat surprisingly,
given any tree T , there exists a triangle-tree such that the graph obtained by adding T as a
pendant tree is still common. Furthermore, we show that adding arbitrarily many apex vertices
to any connected bipartite graph on at most 5 vertices give a common graph.

1 Introduction

Ramsey’s theorem states that, for a fixed graph H, every 2-edge-colouring of Kn contains a
monochromatic copy of H whenever n is large enough. Perhaps one of the most natural ques-
tions after Ramsey’s theorem is then how many copies of monochromatic H can be guaranteed to
exist. To formalise this question, let the Ramsey multiplicity M(H;n) be the minimum number
of labelled copies of monochromatic H over all 2-edge-colouring of Kn. We define the Ramsey
multiplicity constant C(H) is defined by

C(H) := lim
n→∞

M(H,n)

n(n− 1) · · · (n− v + 1)
= lim

n→∞
M(H,n) · n−v,

where v is the number of vertices in H. One may easily check that C(H) ≤ 21−e(H) by considering
the random colouring of Kn. A graph is common if C(H) = 21−e(H). For example, Goodman’s
formula [11] implies that a triangle is common, i.e., C(K3) = 1/4.
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Figure 1: Triangle-vertex-tree, triangle-edge-tree, and triangle-tree.

In 1962, Erdős [8] conjectured that every complete graph Kt is common. This was later gener-
alised by Burr and Rosta [4], who conjectured that in fact every graph H is common. In the late
1980s, both conjectures were disproved. Sidorenko [23] gave an example, a triangle plus a pendant
edge, of an uncommon graph, and Thomason [28] proved that every Kt, t ≥ 4, is uncommon.

Since then, more examples of uncommon graphs have been found. For instance, Jagger, Št’ov́ıček
and Thomason [14] proved that every graph containing K4 as a subgraph is uncommon, and Fox [9]
proved that C(H) can be exponentially smaller than the commonality bound 21−e(H).

Despite its importance, the full classification of common graphs is still a wide open problem.
Finding bipartite common graphs relies entirely on the recent progress on Sidorenko’s conjec-
ture [24], since the conjecture implies that every bipartite graph is common. The converse is
however unknown to be true or not, although very recently it was shown [15] that a bipartite graph
satisfies Sidorenko’s conjecture if and only if it is common in any multi-colour sense. There have
been some progress on Sidorenko’s conjecture (see, for example, [6] and references therein) but the
full conjecture remains open.

For non-bipartite common graphs, there are fewer known examples. One of the earliest applica-
tions of the flag algebra method in [13] proved that the 5-wheel is common. For tripartite graphs,
a few more examples have been collected, e.g., odd cycles [23] and even wheels [14, 25].

Two of very few general example classes of non-bipartite common graphs are triangle-vertex-
trees and triangle-edge-trees, obtained by Sidorenko [25] and reproved by Jagger, Št’ov́ıček, and
Thomason [14]. These can be described recursively. A single triangle is a triangle-tree and one
may obtain a triangle-tree by identifying a single vertex or an edge of a new triangle with a vertex
or an edge, respectively, in a triangle-tree. A triangle-tree is a triangle-vertex-tree (resp. triangle-
edge-tree) if it is obtained by identifying only vertices (resp. edges). See Figure 1 for examples.

Jagger, Št’ov́ıček and Thomason [14] asked a question to decide whether other tree-like structures
than triangle-vertex (or triangle-edge) trees formed from triangles are common. In particular, they
asked if a triangle-tree formed by three triangles, as described in Figure 2, is common. We ultimately
answer these questions.

Figure 2: A triangle-tree questioned by Jagger, Št’ov́ıček and Thomason [14].

Theorem 1.1. Every triangle-tree is common.
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As implicitly evidenced by fewer known examples, non-bipartite graphs are more ‘likely’ to
be uncommon than bipartite graphs in two ways. Firstly, no examples of bipartite uncommon
graphs, which will disprove Sidorenko’s conjecture if exist, are known. Second, there is a well-
known strategy to produce a non-bipartite uncommon graphs. That is, adding a (possibly large)
pendant tree, e.g., a long path.

Sidorenko’s counterexample, the triangle plus a pendant edge, for the Burr–Rosta conjecture
can be seen as one of the earliest examples of such kind. For another example, Fox [9, Lemma 2.1]
observed that a graph with chromatic number at least four and small enough average degree is
always uncommon. As a corollary, adding a long pendant path to substantially lower the average
degree of the graph always guarantees that the resulting graph is uncommon. However, the same
strategy does not apply straightforwardly to tripartite graphs. Fox instead proved in the same
paper that the complete tripartite graph Kt,t,t plus a pendant path of length Ω(t2) is uncommon,
but, at the best of our knowledge, there is no general statement that can be compared to the higher
chromatic number case.

Our second result gives a reason why adding pendant trees to tripartite graphs is not as powerful
as the case for graphs with a higher chromatic number in constructing uncommon graphs. For a
tree T and a graph H, let T ∗vu H be the graph obtained by identifying u ∈ V (T ) and v ∈ V (H).

Theorem 1.2. Let t be a positive integer. Then there exists a tripartite common graph H such
that T ∗vu H is common for every choice of tree T with e(T ) ≤ t, u ∈ V (T ), and v ∈ V (H).

In other words, there is a tripartite graph H that is ‘robustly common’ in the sense that adding
any tree T of bounded size does not break its commonality.

At the Canadian Discrete and Algorithmic Mathematics Conference in 2017, Julia Wolf asked
a question to complete the list of connected common graphs on five vertices during her plenary
talk on [22] that concerns with arithmetic variants of commonality questions. As a corollary, we
prove commonality of the two graphs in Figure 3 that were unknown to be common by then; see
Concluding Remarks for more discussions about Wolf’s list.

Figure 3: Example applications of Theorem 1.2.

Another interesting class of tripartite common graphs was obtained by Sidorenko [25] built
upon his conjecture. If a connected bipartite graph H satisfies Sidorenko’s conjecture, then adding
an apex vertex v, i.e., adding all the edges between the new vertex v and each vertex of H, gives
a tripartite common graph. We conjecture that adding more apex vertices still produces common
graphs. For a graph H and a positive integer a, let H+a be the graph obtained from H by adding
additional a vertices fully connected to H and not connected to each other.

Conjecture 1.3. If a connected bipartite graph H satisfies Sidorenko’s conjecture, then for every
positive integer a the graph H+a is common. In particular, every complete tripartite graph Kr,s,t is
common.

We verify this conjecture for all connected bipartite graphs H on at most 5 vertices, so, in
particular, the complete tripartite graphs K2,2,a and K2,3,a are common for every a ≥ 1.

Theorem 1.4. For every connected bipartite graph H on at most 5 vertices and positive integer a
the graph H+a is common.
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The proof of Theorem 1.4 relies on the computer-assisted flag algebra method, but we also
give a computer-free proof for some cases. In particular, we prove that the octahedron graph,
i.e., C+2

4 = K2,2,2, is common without using computers, which will then generalise to the so-called
beachball graphs (see Theorem 4.3).

2 Preliminaries

A graph homomorphism from a graph H to a graph G is a vertex map that preserves adjacency.
Let Hom(H,G) denote the set of all homomorphisms from H to G and let tH(G) be the probability

that a uniform random mapping from H to G is a homomorphism. i.e., tH(G) = |Hom(H,G)|
|V (G)||V (H)| .

The graph homomorphism density tH(G) naturally extends to weighted graphs and their limit
object graphons, i.e., measurable symmetric functions W : [0, 1]2 → [0, 1]. We define

tH(W ) := E

 ∏
uv∈E(H)

W (xu, xv)

 ,

where E denotes the integration with respect to the Lebesgue measure on [0, 1]V (H). One may see
that the original definition of tH(G) corresponds to the case W = WG, where WG is the block
0-1 graphon constructed by the adjacency matrix of G. As nonnegativity of W is unnecessary

for the definition, we shall also use tH(U) := E
(∏

uv∈E(H) U(xu, xv)
)

for signed graphons U , i.e.,

measurable symmetric functions U : [0, 1]2 → [−1, 1].
The monochromatic (labelled) copies of H in a 2-edge-colouring can be rewritten as

mH(W ) := tH(W ) + tH(1−W ).

Note that mH(W ) = mH(1−W ) and C(H) = minW mH(W ), where the minimum is taken over all
graphons W . Indeed, the minimum exists by the compactness of the space of graphon under the cut
norms and the latter follows from the standard W -random graph sampling (see, for example, [17]).
Thus, a graph H is common if and only if mH(W ) ≥ 21−e(H) for each graphon W .

Let E(H) be the family of subgraphs of H with even number of edges and let E+(H) be the
collection of nonempty graphs in E(H). Then, with U := 2W − 1,

mH(W ) = tH

(
1 + U

2

)
+ tH

(
1− U

2

)

= 21−e(H)
∑

F∈E(H)

tF (U) = 21−e(H)

1 +
∑

F∈E+(H)

tF (U)

 . (1)

Hence, H is common if and only if
∑

F∈E+(H) tF (U) ≥ 0 for every signed graphon U .
An immediate consequence of this expansion is a well-known formula by Goodman [11].

Lemma 2.1 (Goodman’s formula). For every graphon W , mK3(W ) = 3
2mK1,2(W )− 1

2 .

Proof. By (1), mK3(W ) = 3
4 tK1,2(U) + 1

4 and mK1,2(W ) = 1
2 tK1,2(U) + 1

2 .

The following is an easy consequence of Hölder’s inequality, which will be repeatedly used.
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Lemma 2.2. Let H,F , and J be graphs and let k and ` be positive integers with ` ≥ k. For a
graphon W , if

tH(W ) ≥ tJ(W )`

tF (W )k−1
and tH(1−W ) ≥ tJ(1−W )`

tF (1−W )k−1
,

then

mH(W ) ≥ 2k−`
mJ(W )`

mF (W )k−1
.

Proof. We use Hölder’s inequality of the form

k∏
i=1

∫
fi(x)kdx ≥

(∫ k∏
i=1

fi(x)dx

)k
for nonnegative functions fi. Let the integration be the sum of two terms. Then

k∏
i=1

(aki + bki ) ≥

 k∏
i=1

ai +

k∏
j=1

bj

k

(2)

for nonnegative numbers ai and bj , it follows that

mH(W ) = tH(W ) + tH(1−W ) ≥ tJ(W )`

tF (W )k−1
+

tJ(1−W )`

tF (1−W )k−1

=

(
tJ(W )`

tF (W )k−1
+

tJ(1−W )`

tF (1−W )k−1

)(
tF (W ) + tF (1−W )

)k−1
mF (W )−k+1

≥(2)

(
tJ(W )

`
k + tJ(1−W )

`
k

)k
mF (W )−k+1

≥ 2k−`
mJ(W )`

mF (W )k−1
.

Indeed, the first inequality is Hölder’s inequality (2) and the second follows from convexity of the
function f(z) = z`/k, as ` ≥ k.

For the proof of Theorem 1.2, we take an information-theoretic approach. We state the following
fact about entropy without proofs and refer the reader to [1] for more detailed information on
entropy and conditional entropy.

Lemma 2.3. Let X, Y , and Z be random variables and suppose that X takes values in a set S,
H(X) is the entropy of X. Then H(X) ≤ log |S|.

3 Triangle-trees

To describe triangle-trees, it is convenient to use the notion of tree decompositions, introduced by
Halin [12] and developed by Robertson and Seymour [21].

Definition 3.1. A tree-decomposition of a graph H is a pair (F , T ) consisting of a family F of
vertex subsets of H and a tree T with V (T ) = F such that

1.
⋃
X∈F X = V (H),
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x y
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x, y, v1

x, y, v2 x, y, v3 x, y, v4

Figure 4: K1,1,4 and its tree decomposition (F , T ).

2. for each e ∈ E(H), there exists a set X ∈ F such that X contains e, and

3. for X,Y, Z ∈ F , X ∩ Y ⊆ Z whenever Z lies on the path from X to Y in T .

Following [7, 16], we say that H is a J-tree if and only if there exists a tree decomposition
(F , T ) such that the subgraph H[X] of H induced on X ∈ F is isomorphic to J and moreover,
there is an isomorphism between H[X] and H[Y ] that fixes H[X ∩Y ] whenever XY ∈ E(T ). Such
a tree-decomposition (F , T ) of H is called a J-decomposition. When J = K3, we simply say that
H is a triangle-tree with a triangle-decomposition (F , T ). It is straightforward to see that this
definition is equivalent to the recursive one given in the introduction.

For a triangle-tree H with a triangle-decomposition (F , T ), one may easily relate |F| to v(H)
and e(H). Let ϕ(H) := e(H)− v(H) + 1 and κ(H) := 2e(H)− 3v(H) + 3.

Lemma 3.2. If H is a triangle-tree with a triangle-decomposition (F , T ), then |F| = ϕ(H) and
the number of edges XY ∈ E(T ) such that the subgraph H[X ∩ Y ] is a single edge equals to κ(H).
In particular, κ(H) ≤ ϕ(H)− 1 for every triangle-tree H.

Proof. Let k := k(F) be the number of edges XY ∈ E(T ) such that the subgraph H[X ∩ Y ] is an
edge. For an edge e ∈ E(H), let te be the number of contributions of e in the sum

∑
X∈F e(H[X]).

That is,

3|F| =
∑
X∈F

e(H[X]) =
∑

e∈E(H)

te.

On the other hand, te − 1 is equal to the number of edges XY ∈ E(T ) such that H[X ∩ Y ] is
the single-edge {e}, which proves e(H) = 3|F| − k. Analogously, v(H) = 2|F| + 1 − k and hence,
|F| = e(H) − v(H) − 1 = ϕ(H) and k(F) = 2e(H) − 3v(H) + 3 = κ(H). Finally, κ(H) = k ≤
e(T ) = |F| − 1 = ϕ(H)− 1.

The key ingredient in the proof of Theorem 1.1 is the following lemma.

Lemma 3.3 ([16], Theorem 2.7). Let H be a J-tree with a J-decomposition (F , T ) and let W be
a nonzero graphon. Then

tH(W ) ≥ tJ(W )|F|∏
XY ∈E(T ) tH[X∩Y ](W )

. (3)

Lemma 3.3 in particular reproves standard applications of the Cauchy–Schwarz inequality or
Jensen’s inequality. For example, K1,1,t is a triangle-tree, since there is a triangle decomposition
(F , T ) that consists of |F| = t and the star T on F with t− 1 leaves, where each vertex subset in
F induces a triangle; see Figure 4. Thus, Lemma 3.3 gives tK1,1,t(W ) ≥ tK3(W )t/tK2(G)t−1, which
also follows from a standard application of Jensen’s inequality.

In order to prove Theorem 1.1, we are going to apply Lemma 3.3 for J = K3.
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Corollary 3.4. If H is a triangle-tree and W is a nonzero graphon, then

tH(W ) ≥ tK3(W )ϕ(H)

tK2(W )κ(H)
. (4)

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let H be a triangle-tree. If W = 1 or W = 0 almost everywhere, then
mH(W ) = 1. Otherwise, two applications of (4) yields

tH(W ) ≥ tK3(W )ϕ(H)

tK2(W )κ(H)
and tH(1−W ) ≥ tK3(1−W )ϕ(H)

tK2(1−W )κ(H)
.

Therefore, by Lemma 2.2 with J = K3, H = K2, ` = ϕ(H) and k = κ(H) + 1, we have

mH(W ) ≥ 2κ(H)+1−ϕ(H) · mK3(W )ϕ(H)

mK2(W )κ(H)
= 2κ(H)+1−ϕ(H) ·mK3(W )ϕ(H) ≥ 2κ(H)+1−3ϕ(H) = 21−e(H).

Indeed, the last inequality uses the commonality of a triangle, i.e., mK3(W ) ≥ 1/4.

To prove Theorem 1.2, we need a slightly more careful analysis than just a simple application
of Lemma 3.3. The main tool is [16, Theorem 2.6], which will be stated shortly. Let F be a family
of subsets of [k] := {1, 2, . . . , k}. A Markov tree on [k] is a pair (F , T ) with T a tree on vertex set
F that satisfies

1.
⋃
F∈F F = [k] and

2. for A,B,C ∈ F , A ∩B ⊆ C whenever C lies on the path from A to B in T .

This is an abstract tree-like structure without the graph structure considered in defining tree-
decompositions. In particular, a tree-decomposition of H is a Markov tree on V (H). For more
detailed explanation, we refer to [16]. Let V be a finite set and for each F ∈ F let XF = (Xi;F )i∈F
be a random vector taking values in V F . The following theorem states that there exist random
variables Y1, Y2, . . . , Yk such that, for each F ∈ F , the two random vectors (Yi)i∈F and XF are
identically distributed over V F and, moreover, the maximum entropy under such constraints can
always be attained.

Lemma 3.5 ([16], Theorem 2.6). Let (F , T ) be a Markov tree on [k]. Let V be a finite set and
for each F ∈ F let XF = (Xi;F )i∈F be a random vector taking values in V F . If (Xi;A)i∈A∩B and
(Xj;B)j∈A∩B are identically distributed whenever AB ∈ E(T ), then there exists Y = (Y1, . . . , Yk)
with entropy

H(Y) =
∑
F∈F

H(XF )−
∑

AB∈E(T )

H((Xi;A)i∈A∩B) (5)

such that (Yi)i∈F and XF are identically distributed over V F for all F ∈ F .

An entropy analysis using this lemma give the following corollary. Recall that for a tree T and
a graph H, we denote by T ∗vu H the graph obtained by identifying u ∈ V (T ) and v ∈ V (H).

Lemma 3.6. If H is a triangle-tree and T a tree with at most κ(H) edges, then

tT∗vuH(W ) ≥ tK3(W )ϕ(H)

tK2(W )κ(H)−e(T ) (6)

for every u ∈ V (T ) and v ∈ V (H).
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Using this lemma, the proof of Theorem 1.2 is almost identical to that of Theorem 1.1.

Proof of Theorem 1.2. Let H be a triangle-tree such that κ(H) ≥ t, T a tree with at most t edges,
and W a nonzero graphon. By Lemma 3.2, e(H) = 3ϕ(H)− κ(H) and thus,

e(T ∗vu H) = e(T ) + e(H) = 3ϕ(H)− κ(H) + e(T ).

Combining (6) and Lemma 2.2 for J = K3, H = K2, ` = ϕ(H) and k = κ(H)− e(T ) + 1 yields

mT∗vuH(W ) ≥ 2κ(H)+1−e(T )−ϕ(H) ·mK3(W )ϕ(H).

Note that in order to apply Lemma 2.2, we required κ(H) ≥ e(T ). As mK3(W ) ≥ 1/4, we have

mT∗vuH(W ) ≥ 2κ(H)+1−e(T )−3ϕ(H) = 21−e(H)−e(T ) = 21−e(T∗
v
uH).

Therefore, T ∗vu H is common.

It remains to prove Lemma 3.6.

Proof of Lemma 3.6. Let (F , T ) be a triangle-decomposition of H and k := κ(H). Recall that k is
the number of edges XY ∈ E(T ) such that the subgraph H[X ∩ Y ] ∼= K2. The first step is to find
a natural tree-decomposition of T ∗vu H that extends (F , T ).

Let T be rooted at a leaf x ∈ V (T ) and suppose that we orient each edge of T away from the
root. Let S be a tree on E(T ), where the oriented edges (u1, v1) and (u2, v2) are adjacent if and only
if v1 = u2. One may easily check that (E(T ),S) is a tree decomposition of T . Now pick an edge
uu′ ∈ E(T ), which is a vertex of S, and connect it to a vertex bag X ∈ F that contains v ∈ V (T )
while identifying u and v. This new tree T ′, obtained by adding an edge between two vertices uu′

and X, gives a tree-decomposition (F ′, T ′) of T ∗vu H, where F ′ := V (T ′) = V (T ) ∪ V (S).
It is enough to prove the inequality (6) for an n-vertex graph G instead of a graphon W , since

there is a sequence of graphs (Gi)
∞
i=1 that ‘converges’ to W , i.e., tJ(Gi) → tJ(W ) as i → ∞ for

every fixed graph J . For brevity, we identify the vertex set V (T ∗vuH) with the set [t] and let 1 ∈ [t]
be the vertex shared by H and T . For each F ∈ F ′ with |F | = 3, let XF = (Xi;F )i∈F be a uniform
random triangle in G, labelled by vertices in F . If |F | = 2 then let XF = (Xi;F )i∈F be a random
edge labelled by vertices in F sampled in such a way that P[XF = (v1, v2)] is proportional to the
number of triangles that contains the edge v1v2 ∈ E(G). We call this possibly non-uniform edge
distribution triangle-projected.

We claim that (Xi;A)i∈A∩B and (Xi;B)i∈A∩B are identically distributed. If |A ∩ B| = 2, then
both distributions are triangle-projected. If |A ∩ B| = 1, i.e., A ∩ B = x ∈ V (T ∗vu H), then both
distributions are proportional to the weighted degree sum

∑
x⊂e pe where pe is the probability of an

edge being sampled by the triangle-projected distribution. Therefore, by Lemma 3.5, there exists
Y = (Y1, . . . , Yt) with entropy

H(Y) =
∑
F∈F ′

H(XF )−
∑

AB∈E(T ′)

H((Xi;A)i∈A∩B)

=
∑
F∈F

H(XF ) +
∑

F∈E(T )

H(XF )−
∑

AB∈E(T )

H((Xi;A)i∈A∩B)−
∑

AB∈E(S)

H((Xi;A)i∈A∩B)−H(Y1).

Recall that the vertex 1 is the vertex shared by T and H, so Y1 means the random image of the
vertex with respect to Y. For F ∈ F , H(XF ) = log |Hom(K3, G)|, since XF is a uniform random
triangle. For F ∈ E(T ), H(XF ) is the entropy he of the triangle-projected edge distribution. There
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are exactly k cases such that |A∩B| = 2 and AB ∈ E(T ), and for such cases, H((Xi;A)i∈A∩B) = he.
Thus,

H(Y) = |F| log |Hom(K3, G)|+
∑

F∈E(T )

H(XF )−
∑

AB∈E(T ′)

H((Xi;A)i∈A∩B)

≥ |F| log |Hom(K3, G)| − (k − e(T ))he − (e(T ′)− k) log |V (G)|
≥ |F| log |Hom(K3, G)| − (k − e(T )) log |Hom(K2, G)| − (e(T ′)− k) log n

Indeed, the first inequality follows from the bound H((Xi;A)i∈A∩B) ≤ log n by Lemma 2.3 when
|A∩B| = 1, and the second follows from the bound he ≤ log |Hom(T ∗vuH,G)| by the same lemma.
Again by Lemma 2.3, H(Y) ≤ log |Hom(H,G)|. Thus,

tT∗vuH(G) =
|Hom(T ∗vu H,G)|
nv(H)+v(T )−1 ≥ |Hom(K3, G)||F|

|Hom(K2, G)|k−e(T )ne(T ′)−k ·
1

nv(H)+v(T )−1

=
tK3(G)|F|

tK2(G)k−e(T )ne(T ′)+k−2e(T ) ·
n3|F|

nv(H)+v(T )−1 =
tK3(G)|F|

tK2(G)k−e(T )
,

where the last equality follows from the identity e(T ′) = e(T ) + e(S) + 1 = |F| + e(T ) − 1 and
Lemma 3.2.

4 Beachball graphs and bipartite graphs with apex vertices

The proof of Theorem 1.4 combines our novel ideas and the flag algebra method developed by
Razborov [20]. To demonstrate how the new method works without using flag algebras, we firstly
prove that K2,2,2 is common.

Theorem 4.1. The octahedron K2,2,2 is common.

By a standard application of the Cauchy–Schwarz inequality (or Lemma 3.3), it is easy to see
that tK2,2,2(W ) ≥ tK1,2,2(W )2/tC4(W ). Then by Lemma 2.2, we immediately obtain

mK2,2,2(W ) ≥
mK1,2,2(W )2

mC4(W )
. (7)

By Sidorenko’s theorem [25], the 4-wheel K1,2,2 is common; however, mC4(W ) = 1/8 if and only
if W = 1/2 almost everywhere, i.e., W is quasirandom, the naive approach using commonality
of K1,2,2 while bounding mC4 from above does not work. We circumvent this difficulty by comparing
mK1,2,2(W ) and mC4(W ). Another application of the Cauchy–Schwarz inequality, together with
Lemma 2.2, gives

mK1,2,2(W ) ≥
mK1,1,2(W )2

mK1,2(W )
.

For brevity, denote D := K1,1,2, which is the diamond graph obtained by adding a diagonal edge
to the 4-cycle. The following lemma, partly motivated by [13], enables us to compare mD(W ) and
mC4(W ).

Lemma 4.2. Let 0 ≤ c ≤ (3−
√

5)/4. For any graphon W , the following inequality holds:

mD(W )− 1/16 ≥ c(mC4(W )− 1/8).

9



Proof. Using (1) with U := 2W − 1 and H = D, we obtain

mD(W )− 1

16
=

1

16

∑
F∈E+(D)

tF (U) =
1

16

(
2t2·K2(U) + 8tK1,2(U) + 4tK+

3
(U) + tC4(U)

)
,

where K+
3 denotes the triangle plus a pendant edge. The same argument for mC4(W ) yields

mC4(W )− 1

8
=

1

8

(
2t2·K2(U) + 4tK1,2(U) + tC4(U)

)
,

and thus,

mD(W )− 1

16
− c(mC4(W )− 1

8
)

=
1

16

(
(2− 4c)t2·K2(U) + (8− 8c)tK1,2(U) + 4tK+

3
(U) + (1− 2c)tC4(U)

)
. (8)

Recall that U = 2W−1 is not necessarily nonnegative, but tK1,2(U), t2·K2(U), and tC4(U) are always
nonnegative, since tK1,2(U) ≥ tK2(U)2 = t2·K2(U) and tC4(U) ≥ tK1,2(U)2. The key inequality we
shall prove is

|tK+
3

(U)| ≤
√
tK1,2(U)tC4(U). (9)

Suppose that this is true. Then (8) gives the lower bound

(2− 4c)t2·K2(U) + (8− 8c)tK1,2(U)− 4
√
tK1,2(U)tC4(U) + (1− 2c)tC4(U)

for 16
(
mD(W )− 1/16− c(mC4(W )− 1/8)

)
. This is nonnegative whenever (8− 8c)(1− 2c) ≥ 4 and

c ≤ 1/2. Taking 0 ≤ c ≤ 3−
√
5

4 suffices for this purpose.
It remains to prove (9). Denote ν(x, z) := Ey U(x, y)U(y, z) and µ(z) := Ew U(z, w). Then

|tK+
3

(U)| =
∣∣E [U(x, y)U(y, z)U(z, x)U(z, w)

]∣∣ =
∣∣E [ν(x, z)U(z, x)µ(z)

]∣∣
≤ (E[ν(x, z)2])1/2(E[U(z, x)2µ(z)2])1/2

≤ (E[ν(x, z)2])1/2(E[µ(z)2])1/2 =
√
tK1,2(U)tC4(U).

Proof of Theorem 4.1. Recall that repeated applications of Lemma 2.2 yield

mK2,2,2(W ) ≥ mD(W )4

mK1,2(W )2mC4(W )
.

By Goodman’s formula (Lemma 2.1), mK1,2(W ) = 2
3mK3(W ) + 1

3 . Together with the inequality
mD(W ) ≥ mK3(W )2 that follows from Lemma 2.2 and the inequality tD(W ) ≥ tK3(W )2/tK2(W ),
we obtain

mK1,2(W ) =
2

3
mK3(W ) +

1

3
≤ 2

3

√
mD(W ) +

1

3
. (10)

Therefore, by using Lemma 4.2,

mK2,2,2(W ) ≥ mD(W )4

mK1,2(W )2mC4(W )
≥ c ·mD(W )4(

2
3

√
mD(W ) + 1

3

)2 (
mD(W )− 1

16 + c
8

) .
10



B4 = K2,2,2 B6 D2 D4

Figure 5: Graphs B4, B6, D2, and D4.

This lower bound is a rational function hc of x :=
√
mD(W ), which simplifies to

hc(x) :=
144cx8

(2x+ 1)2(16x2 − 1 + 2c)
.

We are looking at the range x ≥ 1/4, as mD(W ) ≥ 1/16 by commonality of D. Taking, for

example, c = 1/7 < 3−
√
5

4 makes the function hc monotone increasing on x ≥ 1/4, and thus,
hc(z) ≥ fc(1/4) = 2−11. This proves that K2,2,2 is common.

Let the k-beachball graph Bk be the graph obtained by gluing two copies of k-wheels along the
k-cycle. In particular, K2,2,2 is the 4-beachball, since it can be obtained by gluing two copies of
4-wheels along a 4-cycle. See Figure 5, where the 4-cycle is marked bold. As a straightforward
generalisation of Theorem 4.1, we also prove the following theorem.

Theorem 4.3. For every k ≥ 2, the 2k-beachball B2k is common.

Proof. The proof is essentially the same as Theorem 4.1 despite a slightly general setting. Let Dk

be the graph obtained by adding two apex vertices to a k-edge path, i.e., it consists of k copies of
diamonds glued along K1,2’s centred at the vertices of degree three in a path-like way, as described
in Figure 5. In particular, D1 = D and D2 is the 4-wheel. Lemma 3.3 then gives

tDk
(W ) ≥ tD(W )k

tK1,2(W )k−1

and thus, mDk
(W ) ≥ mD(W )k/mK1,2(W )k−1 by Lemma 2.2.

The 2k-beachball is then obtained by gluing two copies of Dk along the 4-cycle that contains two
vertices of degree three. The standard application of the Cauchy–Schwarz inequality (or Lemma 3.3)
gives tB2k

(W ) ≥ tDk
(W )2/tC4(W ), and thus,

mB2k
(W ) ≥ mDk

(W )2

mC4(W )
≥ mD(W )2k

mK1,2(W )2k−2mC4(W )

by Lemma 2.2. Then again by (10) and Lemma 4.2,

mB2k
(W ) ≥ c ·mD(W )2k(

2
3

√
mD(W ) + 1

3

)2k−2 (
mD(W )− 1

16 + c
8

) .
It remains to minimise rational function

hk,c(x) :=
16 · 32k−2cx4k

(2x+ 1)2k−2(16x2 − 1 + 2c)

11



K2 K1,2 = P3 K1,3 P4 C4

K1,4 P4 ∗vu K2 P5
K−2,3 K2,3

Figure 6: The ten connected bipartite graphs on at most 5 vertices from Lemma 4.4.

of x :=
√
mD(W ) subject to x ≥ 1/4. Taking c = 1/7, hk,1/7 is a positive constant times the

function gk, where the derivative

g′k(x) = (2x+ 1)1−2k(112x2 − 5)−2x4k−1(112kx3 + (112k − 56)x2 − (5k + 5)x− 5k).

Thus, it suffices to check pk(x) = 112kx3+(112k−56)x2−(5k+5)x−5k > 0 on x ≥ 1/4. Rearranging
the terms we get pk(x) = 112k(x−1/4)3+(196k−56)(x−1/4)2+(72k−33)(x−1/4)+(10k−19)/4,
which is positive for x ≥ 1/4 and k ≥ 2. Therefore, hk,1/7(x) is minimised when x = 1/4, which
implies B2k is common.

We remark that the constant c = 1/7 has been judiciously chosen. Indeed, if c is too large,
then it gets tougher or even impossible to obtain the inequality in Lemma 4.2. Otherwise, if c is
too small, then the rational function hc(x) may attain its local minimum at some x0 > 1/4 and the
optimisation does not work. This does happen if one tries to apply the same argument to prove
that K2,2,t is common for t > 2.

However, the flag algebras allow us to prove inequalities that resemble Lemma 4.2 and can be
directly applied to (7), which gives tighter bounds than the previous approach does. In particular,
the following lemma generalises Lemma 4.2 for any connected bipartite graph on at most 5 vertices.

Lemma 4.4. If H is a connected bipartite graph on at most 5 vertices and W is a graphon, then

mH+1(W ) ≥ 2−v(H) ·mH(W ). (11)

Moreover, if H 6= K2, then mH+1(W ) = 2−v(H) ·mH(W ) if and only if mC4(W ) = 1/8.

Proof. For any of the ten considered graphs, the proof of (11) is a straightforward flag algebra
application. As the proof of (11) for H 6= K2 uses mC4(W ) ≥ 1/8, the moreover part follows by
complementary slackness. The flag algebra calculations certifying (11) can be downloaded from
http://lidicky.name/pub/common/.

Proof of Theorem 1.4. A simple convexity argument (or Lemma 3.3) gives the inequality

tH+a(W ) ≥ tH+1(W )a

tH(W )a−1
.

Lemma 2.2 then proves

mH+a(W ) ≥ mH+1(W )a

mH(W )a−1

12
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and by Lemma 4.4,

mH+a(W ) ≥ mH(W )

2a·v(H)
.

Since H satisfies Sidorenko’s conjecture, H is common and mH(W ) ≥ 21−e(H). Thus, we obtain
the lower bound mH+a(W ) ≥ 21−e(H)−a·v(H) = 21−e(H

+a), which means that H+a is common.

We remark that, if Lemma 4.4 holds for any common graph H, the proof above will immediately
prove that H+a is common for every positive integer a.

5 Concluding remarks

Stability. When a graph H is known to be common, it is natural to ask a stability question,
i.e., whether the random colouring is (asymptotically) the unique minimiser of the number of
monochromatic copies of H. In other words, is mH(W ) uniquely minimised by W = 1/2 almost
everywhere? For bipartite graphs, this question connects to the so-called Forcing Conjecture [26, 5]
stating that if H is bipartite with at least one cycle and p ∈ (0, 1), then W = p almost everywhere
uniquely minimises the number of copies of H among all graphons of density p.

For our results, one may check that that the random colouring is the unique minimiser of
mH whenever H is a triangle-tree with κ(H) ≥ 1, i.e., a triangle-tree that is not a triangle-
vertex-tree. Indeed, as both W and 1 − W must be tight for (3), inspecting the proof of [16,
Theorem 2.7] yields that any minimiser of mH must be 1/2-regular and have the ‘correct’ codegrees,
i.e.,

∫
W (x, y)dy = 1/2 and

∫
W (x, z)W (z, y)dz = 1/4 for almost every x, y ∈ [0, 1], respectively.

In particular, Lemma 4.2 and its applications immediately proves that K1,1,2, K1,2,2, and K2,2,2

has a unique minimiser. On the other hand, there are infinitely many minimisers of mK3 as any
1/2-regular graphon W has mK3 = 1/4. This also generalises for triangle-vertex-trees and odd
cycles.

In all the cases covered in Theorem 1.4 except H = K2, the ‘moreover’ part of Lemma 4.4 yields
that the random colouring is the unique minimiser. When H = K2, the graph H+a is simply the
complete tripartite graph K1,1,a. Therefore, the case a = 1 corresponds to H+a = K3, so every
1/2-regular graphon minimises mK3 . On the other hand, if a ≥ 2, then H+a is a triangle-tree
with κ(H+a) = a − 1, hence by the discussion in the previous paragraph, mH+a(W ) is uniquely
minimised when W = 1/2 almost everywhere.

Theorem 1.1 for odd cycles. It is certainly possible to generalise Theorem 1.1 by replacing
triangles by odd cycles. One way is to define C2k+1-vertex-tree and C2k+1-edge-tree by allowing
recursive additions of odd cycles along vertices or edges, respectively. For this particular class of
graphs, the proof of Theorem 1.1 easily generalises. It might be possible to generalise this even
further to obtain that C2k+1-trees are common for every k.

Optimal pendant trees. Let H be a common graph. Then one may ask what is the smallest T
that makes T ∗vu H uncommon. To formalise, let

UC(H) := min{e(T ) : T ∗vu H is uncommon}.

Note that this parameter might not exist for some bipartite graphs H. Indeed, if H satisfies
Sidorenko’s conjecture, then T ∗vu H satisfies the conjecture as well. In particular, H is common,
and we let UC(H) =∞. On the other hand, if H is a triangle-edge-tree, then Lemma 3.6 and the
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proof of Theorem 1.2 yield a lower bound for UC(H) that is linear in e(H). Also, Fox’s result [9]
implies that UC(Kt,t,t) = O(t2), which is again linear in terms of the number of edges. It would be
interesting to see more precise estimates for UC(H) for various non-bipartite graphs H.

Ramsey multiplicity constant of small graphs. The smallest graph whose Ramsey multi-
plicity constant is not known is K4, and determining the value of C(K4) is a well-known open
problem in extremal combinatorics with no conjectured value. A direct flag algebra calculation us-
ing expressions with 9-vertex subgraph densities yields C(K4) ≥ 1/33.77 ∼= 0.0296. This is a slight
improvement over previously known lower bounds [10, 27, 18], though there is a non-negligible gap
from the best upper bound 1/33.0135 ∼= 0.0303 due to Thomason [28, 29].

Figure 7 describes the full list of four graphs whose commonality was questioned by Wolf in
CanaDAM 2017. Indeed, Lemma 3.6 proves that H1 and H2 are common, and the graph H3 was in
fact proven to be common in an RSI project at MIT [19] in 2016 using flag algebras. Another flag
algebra application shows that H4 are common; in Appendix, we give a proof that both H3 and H4

are common. Although it is possible to fully inspect the presented proof by hand, some of the steps
were obtained by using computers. It would still be interesting to find simpler ‘human-friendly’
proofs of the commonality of H3 or H4.

H1 H2 H3 H4

Figure 7: Wolf’s list of 5-vertex graphs.

Flag algebras also prove that various 4-chromatic graphs are common: the 7-wheel and all the
(connected) 7-vertex K4-free non-3-colourable graphs are common; see Figure 8 for the complete
list. We in fact suspect that all odd wheels are common, although the same approach for the
9-wheel is already beyond our computational capacity.

Figure 8: Non-3-colourable common graphs on 7 vertices.

Acknowledgements. Part of this work was carried out when the first, second, and third authors
met in Seoul for One-day Meeting on Extremal Combinatorics. We would like to thank the or-
ganisers of the workshop for their hospitality. The second author is grateful to David Conlon for
helpful discussions and comments.

14



References

[1] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third edition, 2008.

[2] D. Applegate, W. Cook, S. Dash, and M. Mevenkamp. QSopt Linear Programming Solver.
http://math.uwaterloo.ca/~bico/qsopt/.

[3] B. Borchers. CSDP, A C library for semidefinite programming. Optimization Methods and
Software, 11(1-4):613–623, 1999.

[4] S. A. Burr and V. Rosta. On the Ramsey multiplicities of graphs—problems and recent results.
Journal of Graph Theory, 4(4):347–361, 1980.

[5] D. Conlon, J. Fox, and B. Sudakov. An approximate version of Sidorenko’s conjecture. Geom.
Funct. Anal., 20(6):1354–1366, 2010.

[6] D. Conlon and J. Lee. Sidorenko’s conjecture for blow-ups. To appear in Discrete Anal.

[7] D. Conlon and J. Lee. Finite reflection groups and graph norms. Adv. Math., 315:130–165,
2017.
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A Proof of commonality of H3 and H4

We present proofs of the inequalities mH3(W ) ≥ 2−5 and mH4(W ) ≥ 2−6 for all graphons W , where
H3 and H4 are depicted on Figure 7. The proofs were obtained with a computer assistance using
libraries CSDP [3] and QSOPT [2].

Firstly, the following three subgraph density expressions will evaluate to a nonnegative number
for every graphon W due to the commonality of the corresponding graphs:

(1) 465 ·
(
mH1(W )− 2−5

)
, (2) 465 ·

(
mH2(W )− 2−5

)
and (3) 48 ·

(
mC5(W )− 2−4

)
.

Moreover, each of these expression will be written as a linear combination of 5-vertex induced
subgraph densities; recall that τH(W ), the induced density of H in W , is defined as follows:

τH(W ) := E

 ∏
ij∈E(H)

W (xi, xj)
∏

ij /∈E(H)

(1−W (xi, xj))

 .
As we aim to exploit the symmetry of the colours in Ramsey multiplicity, we let f(τH(W )) :=
τH(W ) + τH(W ) for every graph H and extend f linearly to formal linear combinations of graphs.

Let Pab(W ) be the probability measure on [0, 1]2 which, given a graphon W , corresponds to
a uniformly sampled pair (a, b) that induces an edge. Let T∅(W ) and Tbc(W ) be the probability
measures on [0, 1]3 that correspond to sampling (a, b, c) inducing an independent set and a single-
edge graph {bc}, respectively. We consider the following 13 density expressions represented as
sum-of-squares (we note that (6) and (7) were suggested by a computer search):

(4) 10 · f
(

E
T∅(W )

[(
P
[
x ∈

⋂
z∈{a,b,c}Nz

]
− P

[
x /∈

⋃
z∈{a,b,c}Nz

])2])
,

(5) 10 · f
(

E
T∅(W )

[(
8 · P

[
x /∈

⋃
z∈{a,b,c}Nz

]
− 1
)2])

,

(6) 30 · f
(

E
Tbc(W )

[(
2 · P[x ∈ Nb∆Nc] + 3 · P [x ∈ (Nb∆Nc) \Na]

)2])
,

(7) 30 · f
(

E
Tbc(W )

[(
2 · P[x ∈ Nb∆Nc]− 7 · P [x ∈ (Nb∆Nc) \Na]

)2])
,

(8) 30 · f
(

E
Tbc(W )

[(
P
[
x ∈

⋂
z∈{a,b,c}Nz

]
− P

[
x /∈

⋃
z∈{a,b,c}Nz

])2])
,

(9) 30 · f
(

E
Tbc(W )

[(
P
[
(x ∈ Na \

⋃
z∈{b,c}Nz

]
− P

[
x /∈

⋃
z∈{a,b,c}Nz

])2])
,

(10) 30 · f
(

E
Tbc(W )

[(
P
[
x ∈

⋂
z∈{b,c}Nz \Na

]
− P

[
x /∈

⋃
z∈{a,b,c}Nz

])2])
,

(11) 30 · f
(

E
Tbc(W )

[(
P [x ∈ (Nb∆Nc) \Na]− 2 · P

[
x /∈

⋃
z∈{a,b,c}Nz

])2])
,

(12) 30 · f
(

E
Tbc(W )

[(
P [x ∈ (Nb∆Nc) ∩Na]− 2 · P

[
x /∈

⋃
z∈{a,b,c}Nz

])2])
,

(13) 15 · E
a∈[0,1]

[((
2 · P[x ∈ Ny]− 1

)
·
(
P [x ∈ Na ∧ y ∈ Na]− P [x /∈ Na ∧ y /∈ Na]

))2]
,

(14) 15 · f
(

E
Pab(W )

[
(P [x ∈ Na]− P [x ∈ Nb])

2
])

,

(15) 15 · E
a∈[0,1]

[
(2 · P [x ∈ Na ∧ y ∈ Na] + 2 · P [x /∈ Na ∧ y /∈ Na]− 1)

2
]
, and

(16) 30 · f
(

E
Pab(W )

[
P[x ∈ Na ∩Nb] ·

(
2 · P [y ∈ Na∆Nb]− 1

)2])
,
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Figure 9: Non-isomorphic partitions of E(K5) into two parts represented by black and white edges.

where x and y are uniformly sampled vertices of W , and x ∈ N? abbreviates the event of sampling
an edge between x and ?. Clearly, each expression evaluates to a nonnegative number for any W
and can be written as a linear combination of 5-vertex induced subgraph densities.

As there are 34 non-isomorphic 5-vertex graphs and two of them are self-complementary, there
are exactly 18 non-isomorphic partitions of E(K5) into two parts (see Figure 9). Therefore, we
may identify each expression described in the previous paragraph with a vector from R18 simply
by letting its i-th coordinate to be the coefficient of the i-th graph in Figure 9 in the corresponding
linear combination. We denote these vectors by w1, w2, . . . , w16, and let M := (w1|w2| · · · |w16) be
the corresponding 18 × 16 matrix. Next, let vA and vB be the vectors from R18 representing the
expressions 480 ·

(
m(H3)− 2−5

)
and 960 ·

(
m(H4)− 2−6

)
, respectively. Then vA, vB, and M are

465
177
33
81
−15
−15
17
1

−15
−15
−15
−7
−15
−15
−15
−15
−15
−15



,



945
273
17
113
−15
−15
17
−15
−15
−15
−15
−15
−15
−15
−15
−15
−15
−15



, and



465 465 45 10 490 0 0 0 0 0 0 0 15 0 15 0
177 177 21 1 7 0 0 3 3 3 12 12 3 0 3 3
49 65 5 0 −27 0 0 1 0 0 −8 0 −3 1 3 −3
49 17 13 0 4 0 0 2 −2 2 8 8 3 −2 −9 6
9 9 −3 −1 −28 75 12 0 0 0 3 0 −3 3 −9 6

−15 33 −3 1 4 0 0 0 0 −6 0 0 −3 3 15 6
1 −15 5 0 2 0 0 1 −1 0 0 0 1 −3 −9 0
1 1 1 0 3 −25 −4 0 0 0 −3 −4 −1 0 3 −5

−15 −15 −3 −4 −28 0 0 0 0 6 0 0 3 6 −9 6
−15 −7 −3 0 3 25 4 −1 0 −1 1 0 1 3 3 −1
−7 −15 −3 0 2 24 5 0 0 0 0 −3 −1 0 −9 0
−15 −15 1 0 1 −24 −5 0 0 0 0 1 1 −3 3 −3
−15 −15 −3 0 2 −100 −16 0 0 0 4 0 −1 0 15 8
−15 −15 −3 1 1 0 0 0 3 0 0 0 −3 −3 3 9
−15 −15 −3 0 3 0 0 −2 0 1 0 0 3 4 3 −1
−15 −15 −3 0 1 −16 45 0 0 0 0 1 −1 −2 3 1
−15 −15 −3 0 2 40 −40 0 0 0 0 0 1 1 −9 0
−15 −15 5 0 0 −40 −250 0 0 0 0 10 5 −5 15 10



,

respectively. Let MA and MB be the submatrices of M obtained by deleting the last and the second
to last column, respectively. It follows both MA and MB have rank 15 and the unique xA and xB
that satisfy vA = MAxA and vB = MBxB have nonnegative entries, explicitly given as follows:

xA =
1

133168
×



22852
10730
448079
6584
13776

1168352
22852

1351168
9280

513184
43384
7888

172057
329614
45472



xB =
1

13601
×



9628
2465
19430
780
2520
56144
9628

133168
19952
19488
14268
6728
71746
14268
18676



.

Thus, mH3(W ) ≥ 2−5 and mH4(W ) ≥ 2−6 for every graphon W .
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