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Abstract4

A facial unique-maximum coloring of a plane graph is a vertex coloring where5

on each face α the maximal color appears exactly once on the vertices of α. If the6

coloring is required to be proper, then the upper bound for the minimal number7

of colors required for such a coloring is set to 5. Fabrici and Göring [5] even con-8

jectured that 4 colors always su�ce. Con�rming the conjecture would hence give9

a considerable strengthening of the Four Color Theorem. In this paper, we prove10

that the conjecture holds for subcubic plane graphs, outerplane graphs and plane11

quadrangulations. Additionally, we consider the facial edge-coloring analogue of the12

aforementioned coloring and prove that every 2-connected plane graph admits such13

a coloring with at most 4 colors.14
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1 Introduction17

In this paper, we consider simple graphs only. We call a graph planar if it can be18

embedded in the plane without crossing edges and we call it plane if it is already embedded19

in this way. A coloring of a graph is an assignment of colors to vertices. If in a coloring20

adjacent vertices receive distinct colors, it is proper. The cornerstone of graph colorings21

is the Four Color Theorem stating that every planar graph can be properly colored using22

at most 4 colors [1]. Fabrici and Göring [5] proposed the following strengthening of the23

Four Color Theorem.24

Conjecture 1 (Fabrici and Göring [5]). If G is a plane graph, then there is a proper25

coloring of the vertices of G by colors in {1, 2, 3, 4} such that every face contains a unique26

vertex colored with the maximal color appearing on that face.27
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A proper coloring of a graph embedded on some surface, where colors are integers and28

every face has a unique vertex colored with a maximal color, is called a facial unique-29

maximum coloring or FUM-coloring for short (Wendland uses the notion capital coloring30

instead). This type of coloring was �rst studied by Fabrici and Göring [5]. The main31

motivation for their research comes from the unique-maximum coloring (also known as32

ordered coloring), de�ned as a coloring where there is only one vertex colored with the33

maximal color on every path in a graph. Studying unique-maximum coloring was moti-34

vated due to a number of applications it �nds in various branches of mathematics and35

computer science; see, e.g., [2, 3, 7] for more details. Fabrici and Göring used this concept36

in a facial version, which is of great interest, among others, also due to Conjecture 1 and37

its direct connection to the Four Color Theorem. Coloring embedded graphs with respect38

to faces is a bursting �eld itself; the main directions are presented in a recent survey by39

Czap and Jendrol' [4].40

For a graph G, the minimum number k such that G admits a FUM-coloring with colors41

{1, 2, . . . , k} is called the FUM chromatic number of G, denoted by χfum(G). Fabrici and42

Göring [5] proved that if G is a plane graph, then χfum(G) ≤ 6. Their result was further43

improved as follows.44

Theorem 1 (Wendland [9]). If G is a plane graph, then χfum(G) ≤ 5.45

We show that the upper bound 4 from Conjecture 1 holds for several subclasses of46

plane graphs, and that, surprisingly, the bound is tight in most of the cases. The main47

result of the paper regarding the FUM-coloring of vertices is the following.48

Theorem 2. If G is a plane subcubic graph or an outerplane graph, then χfum(G) ≤ 4.49

In the second part of the paper, we consider the edge-coloring version of the prob-50

lem, which has been introduced by Fabrici, Jendrol', and Vrbjarová [6]. For a graph G51

embedded on some surface, two distinct edges are said to be facially adjacent if they are52

consecutive in some facial path, i.e., they have a common vertex and they are incident53

with a same face. A facial edge-coloring is a coloring of edges such that facially adjacent54

edges receive distinct colors. It is rather straightforward to prove that every plane graph55

admits a facial edge-coloring with at most 4 colors.56

For a graph G, we denote by χ′fum(G) the minimum number k such that there exists a57

facial edge-coloring using colors 1, . . . , k such that each face is incident with a unique edge58

colored with the maximal color. Such a coloring is called a FUM-edge-coloring. In [6],59

Fabrici et al. proposed the following conjecture.60

Conjecture 2 (Fabrici et al. [6]). If G is a 2-edge-connected plane graph, then χ′fum(G) ≤61

4.62

In [6], the authors proved that χ′fum(G) ≤ 6 for every 2-edge-connected plane graph63

G. Our main result is that we prove χ′fum(G) ≤ 4 if the assumption that the graph is64

2-edge-connected is replaced by 2-vertex-connectivity, supporting Conjecture 2.65

Theorem 3. If G is a 2-vertex-connected plane graph, then χ′fum(G) ≤ 4.66

Observe that every edge in an embedded graph is facially adjacent to at most four67

other edges, therefore one can translate the problem of facial edge-coloring of a plane68
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graph to a vertex coloring of a plane graph with maximum degree 4. Hence, Theorem 169

directly implies χ′fum(G) ≤ 5 for every plane graph G. Similarly, Theorem 2 implies that70

if G is obtained from a plane graph by subdividing every edge, then χ′fum(G) ≤ 4.71

The paper is organized as follows. In Section 2, we prove Theorem 2 and discuss72

the FUM-coloring of vertices. In Section 3, we consider the FUM-edge-coloring and73

prove Theorem 3. Both proofs, of Theorem 2 and Theorem 3, use precoloring extension74

technique successfully applied by Thomassen [8] when proving that every planar graph is75

5-choosable. In Concluding remarks, we present some related results and discuss possible76

future directions on this topic.77

2 FUM-(vertex-)coloring78

In this section we consider the FUM-coloring of vertices and con�rm that Conjecture 179

holds for several subclasses of plane graphs.80

First, we recall a theorem, which is the main tool used in [5], and will prove helpful81

also in proving our results.82

Theorem 4 (Fabrici and Göring [5]). Every plane graph has a (not necessarily proper)83

3-coloring with colors black, blue, and red such that84

(1) each face is incident with at most one red vertex,85

(2) each face that is not incident with a red vertex is incident with exactly one blue86

vertex.87

A slightly stronger version of Theorem 4 was proved by Wendland [9] who also added88

the conclusion that each triangle, facial or separating, contains at least one vertex that89

is not black. This enabled him to improve the upper bound to 5 colors.90

Recall that Conjecture 1 states that if G is a plane graph, then its FUM chromatic91

number is 4, which is the same upper bound as for the chromatic number. One can92

therefore ask, which are the plane graphs admitting a FUM-coloring with at most 393

colors. However, natural candidates such as graphs of large girth, quadrangulations, and94

outerplane graphs have in�nitely many examples with FUM chromatic number 4.95

The example in Figure 1 shows that there is no analogue of Grötzsch's result for the96

FUM-coloring. Indeed, every vertex lies on the outer face, and hence only one can be97

colored with 3 (assuming 3 colors su�ce). As every vertex is incident to at most three98

faces, the maximal color of the fourth face is 2, and hence all the other vertices should99

receive 1, which is not possible, since the coloring must be proper.

Figure 1: Plane graphs with arbitrarily large girth (in fact also outerplane
graphs) need at least 4 colors for a FUM-coloring.

100

We continue by considering plane quadrangulations.101
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Proposition 1. If G is a plane quadrangulation, then χfum(G) ≤ 4. Moreover, there102

exists an in�nite family of plane quadrangulations with FUM chromatic number at least103

4.104

Proof. Let G be a plane quadragulation. A FUM-coloring of G with at most 4 colors105

can be obtained by using Theorem 4 to assign the colors 3 and 4 such that every face is106

incident with at most one 4, and at most one 3 if it is not incident with 4; the remaining107

vertices may be colored by 1 and 2, since G is bipartite.108

To prove the second part of the proposition, consider the graphH depicted in Figure 2.109

Suppose χfum(H) = 3. Then, one of the vertices incident with the outer face f0, say v1,

v1

v2f0

f1

f2

f3 f4

f5 f6

f7

f8

Figure 2: A plane quadrangulation with FUM chromatic number 4.

110

must be colored with 3. This sets the maximal color also for the faces f1, f2, and f3.111

Thus, to provide a unique maximal color for f4, we must color the vertex v2 with 3,112

providing maximal color also for the faces f5, f6, and f7. But, now there is no vertex113

incident with f8 which can be colored with 3, hence there is no unique maximal color for114

f8, a contradiction.115

One obtains an in�nite family of graphs that require at least 4 colors, e.g., by gluing116

an arbitrary plane quadrangulation to the face f5 of H.117

We establish Conjecture 1 also for the classes of subcubic plane graphs and outer-118

plane graphs. The following lemma is motivated by Theorem 4, and we use it to prove119

Theorem 2. The upper bound of 4 is tight for both classes by, e.g., the graph in Figure 1.120

Lemma 1. Suppose G is a plane graph that is either subcubic or outerplane, P is a path121

in the outer face of G on at most two vertices, and the vertices of P are properly colored122

by a coloring c′ with colors {1, 2, 3}. Then there is a vertex coloring c of G such that123

• c matches c′ on P ,124

• c(v) ∈ {1, 2, 3} if v is incident with the outer face, and125

• each inner face has a vertex with unique maximal color.126

Proof. Let G be a smallest counterexample in terms of the number of vertices and with127

largest path P . Clearly, we may assume G has at least 2 vertices. If G is not connected,128

then every component of G can be colored by the minimality of G. The colorings of129

all components together give us a required coloring of G, a contradiction. Hence, we130
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may assume G is connected. If P has less than two vertices, we extend P arbitrarily by131

coloring one of its neighbors on the outer face. Hence P has two vertices.132

We split the rest of the proof into four claims.133

Claim 1. G is 2-connected.134

Proof. Suppose for a contradiction that v is a cut-vertex in G incident with the outer face.135

Let W be the set of vertices consisting of v and the vertices of the connected component136

of G − v that intersects P . Let X = (V (G) \W ) ∪ {v}. By the minimality of G, there137

exists a coloring cW of G[W ] with a path PW = P and a coloring c′W = c′, and there138

exists a coloring cX of G[X] with PX = {v} and c′X being cW restricted to v. Since the139

colorings cW and cX assign the same color to v, they can be combined into a coloring c140

of G, a contradiction. Hence G is 2-connected. �141

Since G is 2-connected, the outer face of G is bounded by a cycle C.142

Claim 2. C has no chords.143

Proof. Suppose for a contradiction that uv is a chord in C. Let W be the set of vertices144

containing u, v, and the vertices of the connected component of G−{u, v} that intersects145

P . Let X = (V (G) \W ) ∪ {u, v}. By the minimality of G, there exists a coloring cW of146

G[W ] with PW = P and c′W = c′, and there exists a coloring cX of G[X] with PX = {u, v}147

and c′X being cW restricted to u and v. Since the colorings cW and cX assign the same148

colors to u and v, they can be combined into a coloring c of G, a contradiction. Hence C149

is a chordless cycle. �150

If G is outerplane, it follows from Claim 2 that it must be a cycle.151

Claim 3. G is not a cycle.152

Proof. Suppose for a contradiction that G is a cycle. The coloring c′ assigns the color153

3 to at most one vertex of P . Hence it is possible to color the vertices of G such that154

exactly one vertex x is colored with 3 and all the others are colored with 1 and 2. The155

interior face of G then has x as the unique vertex colored by the maximal color. �156

Hence, G is not outerplane, so it is subcubic. Moreover, it contains at least one vertex,157

which is not in C; we call such vertices interior.158

Claim 4. In V (C) \ V (P ), there is no vertex of degree 3 with an interior neighbor, nor159

a vertex of degree 2 that is incident with a same face as any interior vertex.160

Proof. Suppose for a contradiction that v ∈ V (C) \ V (P ) is a vertex of degree 3 with an161

interior neighbor u, or a vertex of degree 2 and u is an interior vertex incident with a same162

face as v. Let G′ be the graph obtained from G by deleting u and v. By the minimality163

of G, there is a coloring c of G′ satisfying the assumptions of Lemma 1. Notice that all164

the vertices incident with the same faces as u in G are incident with the outer face in G′165

(except for v). Hence the neighbors of u are colored by c with the colors in {1, 2, 3}. We166

extend c to G by setting c(u) = 4 and assigning to v a color from {1, 2, 3}, which does167

not appear on its two neighbors on the outer face, a contradiction. �168

From Claim 4, it follows that if G is a subcubic plane graph, there are only vertices of169

degree 2 in V (C) \ V (P ). Moreover, if there is an interior vertex in G, then it is incident170
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with the same face as one of the vertices in V (C) \ V (P ). Hence, Claims 3 and 4 give us171

a contradiction on existence of G. This �nishes the proof of Lemma 1.172

Now, we are ready to prove the main theorem of this section.173

Proof of Theorem 2. Let G be a plane subcubic graph or an outerplane graph and v any174

vertex in the outer face of G. Apply Lemma 1 on the graph G − v and color v by 4 to175

complete the coloring of G.176

3 FUM-edge-coloring177

In this section we turn our attention to the FUM-edge-coloring. Notice that the upper178

bound of 4 is the same as in the vertex version, and as already remarked, the edge version179

is only a special case of the former. However, also here, the upper bound is achieved180

within very particular classes of plane graphs, e.g., subcubic outerplane bipartite graphs181

of arbitrarily large girth (see Figure 3 for an example). However, regarding Conjecture 2,

C1 C2

Figure 3: Subcubic outerplane bipartite graphs of arbitrarily large girth
need 4 colors for FUM-edge-coloring.

182

Theorem 3 is the �rst result supporting it.183

Let G be a plane graph. If an edge e = uv is removed from G, new facial adjacencies184

of edges may be introduced around u and v in G − e. However, if we are interested185

only in a facial edge-coloring of G, these new adjacencies may be ignored when coloring186

G−e. This motivates the following concept: let F be a set of pairs of edges. An F-facial187

edge-coloring is an edge-coloring, where every pair of facially adjacent edges that are not188

in F receive distinct colors. We call F the set of free pairs. Two edges are a good pair189

if they are a free pair or if they have a vertex of degree 2 in common. If a vertex v is a190

common vertex of the edges in a good pair, we call v a good vertex.191

Recall that every graph G can be decomposed into maximal 2-connected blocks. The192

block graph B(G) is an intersection graph of blocks in G. Notice that B(G) is a tree and193

hence has at least two leaves (unless G is 2-connected). We call a block corresponding a194

leaf a leaf-block.195

Observation 1. Let G be a 2-connected graph. If uv is an edge of G, then {u, v}196

intersects the set of vertices of every leaf-block of G− uv.197

The following lemma is the core of the proof of Theorem 3.198

Lemma 2. Let G be a plane graph and let F be a set of free pairs, where every leaf-block199

of G has a good vertex in the outer face. Then there exists an F-facial edge-coloring c200

using colors in {1, 2, 3, 4} such that201
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• every edge in the outer face is colored with a color in {1, 2, 3}, and202

• every face, except the outer face, has an edge of a unique maximal color.203

Proof. Let G be the smallest counterexample in terms of the sum of the number of vertices204

and edges.205

First we outline a process of removing an edge from G. Let e = uv be an edge of206

G. Suppose u is a vertex of degree at least 4. Observe that in G − e, the edges e1 and207

e2 that were facially adjacent to e at vertex u are not facially adjacent to each other in208

G, but they are facially adjacent in G − e. Hence, when considering G − e, we modify209

F by adding the pair {e1, e2}. This means u is a good vertex in G − e. Similarly, v is210

good, since it is either a common vertex of a free pair or it has degree at most 2 in G− e.211

Hence, by Observation 1, every leaf-block in G− e contains a good vertex.212

We next describe two con�gurations that cannot appear in G.213

(A) There is no vertex of degree 1 in the outer face of G.214

Suppose for a contradiction that u is a vertex of degree 1 in the outer face and let215

e = uv be the edge incident with u. Let G′ be obtained from G by removing u,216

and let F ′ be obtained from F by including any facially adjacent pair of edges in G′217

that are not facially adjacent in G. By the minimality of G, there exists an F ′-facial218

edge-coloring c′ of G′. Since e is facially adjacent to at most two edges in G, there219

is at least one available color in {1, 2, 3}. Hence, c′ can be extended to an F -facial220

edge-coloring of G, a contradiction.221

(B) There is no edge e in the outer face joining a good vertex u with a vertex v such that222

u and v are in the same block, v is incident with an edge f that is not in the outer223

face, f is facially adjacent with e, and e is in a good pair with some edge incident224

to u (see Figure 4).

ev u

f

Figure 4: Situation in the con�guration (B) in Lemma 2.

225

Suppose for a contradiction that there exists such an edge e in G. Let G′ be obtained226

from G by removing the edges e and f and let F ′ be obtained from F by including227

any facially adjacent pair of edges in G′ that are not facially adjacent in G. By the228

minimality of G, there exists an F ′-facial edge-coloring c′ of G′. Notice that the229

edges of both faces with which f is incident in G become incident with the outer230

face of G′. Hence, setting c′(f) = 4 does not create any con�ict with the other edges231

and it is the unique maximal color for the two faces in G. Since e is in a good pair232

at u, there is at most one facially adjacent edge with e at u in G. There might be233

two facially adjacent edges with e at v, but one of them is f and as c′(f) = 4, there234
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is a color in {1, 2, 3} for e that is not con�icting with the edges that are facially235

adjacent with e. This gives a contradiction.236

Now, let B be a leaf-block in B(G). Hence, there is at most one vertex v ∈ V (B)237

with neighbors in V (G) \ V (B), and it contains at least one good vertex by assumption.238

Observe that if B contains an edge not incident with the outer face, then a con�guration239

described in (B) would occur. Thus we may assume that every edge in B is incident with240

the outer face. Furthermore, by (A), B is a cycle.241

Let G′ be the graph obtained from G by removing all the edges of B and let F ′ be242

obtained from F by including any facially adjacent pairs of edges in G′ that are not243

facially adjacent in G.244

By the minimality of G, there exists an F ′-facial edge-coloring c′ of G′ satisfying the245

assumptions of the lemma. Now we show that c′ extends to G. Since B is a cycle, it246

bounds some inner face which thus needs a unique maximal color. This is achieved by247

coloring exactly one edge of B by the color 3 and all the other edges by 1 and 2.248

Let e1 and e2 be the edges of B incident with v. They may be facially adjacent in G249

to edges of G′ that are colored by c′. Hence, each of e1 and e2 has two available colors and250

the other edges of B have three available colors. If the color 3 is available on ei for some251

i ∈ {1, 2}, we assign c′(ei) = 3, and the remaining edges of B can be colored greedily252

starting from e3−i using only the colors 1 and 2, a contradiction. Hence both, e1 and253

e2, have only the colors 1 and 2 available. Now, B can be colored by coloring any edge254

except e1 and e2 by 3 and the remaining edges of B, including e1 and e2, by alternating255

the colors 1 and 2. This gives a contradiction establishing Lemma 2.256

We �nish this section by presenting a proof of Theorem 3.257

Proof of Theorem 3. Let G be a 2-(vertex-)connected plane graph. Let e = uv be any258

edge in the outer face of G. Let G′ be the graph obtained from G by removing e, and259

let F ′ be the set of facially adjacent pairs of edges in G′ that are not facially adjacent in260

G. Notice that each of u and v is a good vertex in G′. Since G is 2-connected, the block261

graph of G′ is a path with u and v contained in the blocks (or the only block in the case262

when G′ is also 2-connected) corresponding to the endvertices of the path. Hence, G′ and263

F ′ satisfy the assumptions of Lemma 2 and there exists an F ′-facial edge-coloring c′ of264

G′, which can be extended to a FUM-edge-coloring of G by setting c′(e) = 4.265

4 Concluding remarks266

For both variants of FUM-colorings, vertex and edge, the proposed upper bound is set267

at 4 colors. We have shown that there is no analogy with proper colorings, where some268

subclasses of plane graphs require at most 3 colors. On the other hand, we have not been269

able to disprove any of the two conjectures.270

Although the problem of FUM-coloring is intriguing already in the class of plane271

graphs, the concept can be naturally studied also for graphs embedded in higher surfaces.272

Youngs [10] proved that the chromatic number of any quadrangulation of the projective273

plane is either 2 or 4. In Figure 5, we present an example of projective plane graph274

needing 5 colors (we leave the proof to the reader). One may therefore ask, what is the275
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B
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Figure 5: Projective quadrangulation needing 5 colors for a FUM-coloring.

FUM chromatic number of graphs embedded in higher surfaces? How does it behave if276

we add assumption on minimum face length or girth?277

In [9], the author studied the list version of the problem, and he showed that having278

lists of size 7 su�ce for FUM-coloring of any plane graphs. He proposed the following279

conjecture.280

Conjecture 3 (Wendland [9]). If each vertex of a plane graph is assigned a list of 5281

integers, then there exists a FUM-coloring assigning each vertex a color from its list.282

We believe that in FUM-edge-coloring, the upper bound for the list version is the283

same as for the ordinary.284

Conjecture 4. If each edge of a plane graph is assigned a list of 4 integers, then there285

exists a FUM-edge-coloring assigning each edge a color from its list.286
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