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Abstract

If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with en-
tries of the form ±1, then the matrix formed by taking the columns as the eigenvectors
form a Hadamard matrix and the graph is said to be Hadamard diagonalizable.

We determine all graphs which are Hadamard diagonalizable up through 36 vertices.
This is done both via an efficient computation given a small Hadamard matrix combined
with showing that if n = 8k + 4 then the only Hadamard diagonalizable graphs are
Kn, Kn/2,n/2, 2Kn/2, and nK1.

1 Introduction

A Hadamard matrix is an n×n matrix H with entries in ±1 with the property that HTH =
nI, or in other words the columns of H are orthogonal. These matrices have been extensively
studied and it is known that a necessary condition for the existence of such a matrix is that
n = 1, 2 or is a multiple of 4. A well-known and still open problem concerns the question of
whether this is sufficient.

Conjecture 1.1. Hadamard matrices exist for all order of the form n = 4k.
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We will be interested in graphs which are Hadamard diagonalizable with respect to the
Laplacian matrix of the graph. The Laplacian matrix is defined entrywise by

Luv =

⎧⎪⎨⎪⎩
deg(u) if u = v,

−1 if u adjacent to v,

0 otherwise.

This corresponds to graphs for which there exists a full set of ±1 orthogonal eigenvectors, e.g.
there exists a collection of n eigenvectors which correspond with the columns of a Hadamard
matrix. So if we let H denote the corresponding Hadamard matrix we have 1

n
HTLH = Λ

where Λ is the diagonal matrix of the eigenvalues (e.g. there is a Hadamard matrix which
diagonalizes the Laplacian).

Most graphs are not Hadamard diagonalizable. For example they must have order n = 1,
2 or 4k (so that the eigenvectors can make a Hadamard matrix); but this is not sufficient.

Proposition 1.2 ([1, 3]). If G is Hadamard diagonalizable then the graph must be regular,
and moreover all eigenvalues must be even integers.

Proof that the graph is regular. The degrees of the graph correspond to the diagonal entries
of the Laplacian matrix. Now let hk denote the k-th column of H and let λ1, . . . , λn be the
eigenvalues of L (the diagonal entries of Λ), then we have

L =
1

n
HΛHT =

1

n

n∑
k=1

λkhkh
T
k .

On the right hand side is a sum of matrices which have constant diagonal and so L has
constant diagonal, showing the graph is regular.

We will also make use of the following; this follows immediately by noting that the
eigenspaces for a graph and its complement are the same for the Laplacian matrix (the
difference being the eigenvalues).

Proposition 1.3 ([1]). A graph G is Hadamard diagonalizable if and only if Gc (the com-
plement of G) is Hadamard diagonalizable.

Previous research into Hadamard diagonalizable graphs has characterized Hadamard di-
agonalizable graphs up through order n = 12 [1] as well as all Hadamard diagonalizable
graphs for the Sylvester construction for Hadamard matrices of order 2k [3]. The goal of
this current paper is to find all Hadamard diagonalizable graphs up through order n = 36.
This will be done by using theory to show what is possible for graphs of order n = 8k + 4
(see Section 2); and then developing computational tools to search for all possible Hadamard
diagonalizable graphs of small order (see Section 3). Information about the Hadamard di-
agonalizable graphs are given in Section 4. Concluding comments will be given in Section 5.

In Table 1 we summarize the number of Hadamard diagonalizable graphs as well as the
number of inequivalent Hadamard matrices of the indicated order (two Hadamard matrices
are equivalent if you can get from one to the other by some combination of the following
operations: permuting rows, permuting columns, negating some subset of rows, negating
some subset of columns).
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Table 1: The order, number of inequivalent Hadamard matrices (H. matrices), and the
number of Hadamard diagonalizable graphs (H. graphs)

Order H. matrices H. graphs
4 1 4
8 1 10
12 1 4
16 5 50
20 3 4
24 60 26
28 487 4
32 13, 710, 027 10, 196
36 (unknown) 4

2 Hadamard diagonalizable graphs of order n = 8k + 4

We want to show that for order n = 8k+4 there are at most four possible graphs which are
Hadamard diagonalizable. We start with the following graph characterization property.

Lemma 2.1. Suppose G is a connected graph on n vertices. Then G is a complete graph
or a complete bipartite graph if and only if the following holds: for any four distinct vertices
with u adjacent to v, v adjacent to w, w adjacent to x, it must be that x is adjacent to u.

Proof. Assume thatG satisfies the desired condition for all distinct vertices u, v, w, x ∈ V (G).
Suppose u1 · · ·uk are the vertices in a cycle in G. If k ≥ 5, then by assumption, u1u2u3u4 is
a shorter cycle in G. So we have that the girth of G is either 3 or 4 or G is acyclic. If G is
acyclic, then G contains no path on 3 edges, so G is a star making it a complete bipartite
graph.

If the girth of G is 3, let U be a maximal clique. Then |U | ≥ 3. Suppose uv ∈ E(G) such
that u ∈ U and v ∈ V (G) \ U . By assumption, there exist two distinct vertices x, y ∈ U
such that x, y ̸= u. Then xyuv and yxuv are paths of length 3, hence vx, vy ∈ E(G). In
particular, all vertices in U are adjacent to v, but this contradicts that U is a maximal clique.
So it must be the case that no other vertices in G are connected to a vertex in U ; and since
G is connected we can conclude that G is a complete graph.

If the girth of G is 4, let U be a maximal induced complete bipartite subgraph of G with
bipartition U = U1 ∪ U2 such that |U1|, |U2| ≥ 2. Suppose uv ∈ E(G) where u ∈ U and
v ∈ V (G) \ U . Then without loss of generality, u ∈ U1 and there exists a vertex x ∈ U2.
Then for every w ∈ U1, vuxw is a path of length 3 in G, hence vw ∈ E(G). Since G is
triangle-free, vy /∈ E(G) for all y ∈ U2, but this contradicts that U is a maximal induced
complete bipartite subgraph. So it must be the case that no other vertices in G are connected
to a vertex in U ; and since G is connected we can conclude that G is a complete bipartite
graph.

The reverse implication holds by inspection.

We can now use this characterization of graphs to establish the possible Hadamard diag-
onalizable graphs of order n = 8k + 4.
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Theorem 2.2. Suppose H is an n× n Hadamard matrix with the first column consisting of
all 1s. If n = 8k+4 and G is Hadamard diagonalizable, then G ∈ {Kn, Kn/2,n/2, nK1, 2Kn/2}.

Proof. Suppose for sake of contradiction that n = 8k + 4, G is Hadamard diagonalizable,
and G /∈ {Kn, Kn/2,n/2, nK1, 2Kn/2}. By assumption, there exists a diagonal matrix Λ of
eigenvalues with each eigenvalue even (see Proposition 1.2) and

L =
1

n
HΛHT =

1

n

n∑
k=1

λkhkh
T
k .

By Lemma 2.1, we have that G or Gc contains a path of length 3 whose endpoints are not
adjacent (note that because G must be regular then we have that the only possible connected
complete bipartite graph is Kn/2,n/2). Without loss of generality, we assume uvwx is a path
of length 3 in G. For any i, j ∈ [n],

Lij =
1

n

n∑
k=1

λk(hk)i(hk)j.

Since Luv = Lvw = Lwx = −1 and Lux = 0, we have (rearranging)

−3n = n(Luv + Lvw + Lwx + Lux)

=
n∑

k=1

λk((hk)u(hk)v + (hk)v(hk)w + (hk)w(hk)x + (hk)u(hk)x)

=
n∑

k=1

λk((hk)u + (hk)w)((hk)v + (hk)x).

Since each λk is even and each hij ∈ {−1, 1}, it follows that each term in the sum is divisible
by 8, meaning that 8 divides the right hand side. This impliese that n is a multiple of 8.
But that contradicts the assumption that n = 8k + 4, concluding the proof.

The preceding result shows that if a graph is Hadamard diagonalizable of order n = 8k+4
it must be one of the graphs mentioned. We now must argue that all four of these graphs
are realizable.

Proposition 2.3. If n is even and there exists a Hadamard matrix of order n, then the
graphs Kn, Kn/2,n/2, nK1, and 2Kn/2 are Hadamard diagonalizable.

Proof. Given that there exists a Hadamard matrix of order n we may assume that there is
a Hadamard matrix H where h1 is the all 1s vector and h2 is 1 in entries 1, . . . , n/2 and −1
in entries (n/2 + 1), . . . , n. It suffices to show how to write L as a linear combination of the
projection matrices hkh

T
k for the graphs Kn and 2Kn/2 (since this will have the Laplacian

with the correct eigenvalues).
For G = Kn we have

L =
n∑

k=1

hkh
T
k − h1h

T
1 ,
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since the sum becomes nI and the last term is −J .
For G = 2Kn/2 we have

L =
1

2

n∑
k=1

hkh
T
k − 1

2
h1h

T
1 − 1

2
h2h

T
2 ,

since the sum becomes n
2
I and the last two terms combine to give −

(
J
O

O
J

)
.

3 A procedure for finding all graphs diagonalizable by

a given Hadamard matrix

In this section we will assume that we are working with Hadamard matrices where the first
column and first row has all entries equal to 1. In particular, we have that our Hadamard
matrices H will have the form

H =

⎡⎢⎢⎢⎣
1 1 · · · 1
1
... Ĥ
1

⎤⎥⎥⎥⎦
with Ĥ a ±1 matrix. Every Hadamard matrix is equivalent to a matrix of this form by
negating combinations of rows and columns.

We will think of the columns of H as the eigenvectors of L and the first column of H,
the all 1s vector, will correspond with eigenvalue 0. We will let Λ be the diagonal matrix
with diagonal entries (λ1 = 0, λ2, . . . , λn).

Proposition 3.1. The entries L12, . . . , L1n uniquely determine λ2, . . . , λn.

Proof. Since we have

L =
1

n
HΛHT =

1

n

n∑
k=1

λkhkh
T
k , then L1j =

1

n

n∑
k=2

λk(hk)j.

Writing this in matrix form we have

1

n

⎡⎢⎢⎢⎣
(h2)2 (h3)2 · · · (hn)2
(h2)3 (h3)3 · · · (hn)3
...

...
. . .

...
(h2)n (h3)n · · · (hn)n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

λ2

λ3
...
λn

⎤⎥⎥⎥⎦ =
1

n
Ĥ

⎡⎢⎢⎢⎣
λ2

λ3
...
λn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
L12

L13
...

L1n

⎤⎥⎥⎥⎦ .

The result now follows by noting
(
1
n
Ĥ
)−1

= ĤT − J , showing that we can solve for the λi in

terms of the off-diagonal entries in the first row. To see this we look at the rows of Ĥ note
that if we append 1s to the front we have rows of H then any two distinct rows in H are
perpendicular. From this we can conclude that the dot product of two distinct rows in Ĥ
must be −1 (i.e. to compensate for the 1 appended to the front); the dot product of a row

5



in Ĥ with the all 1s vector must similarly be −1; finally, the dot product of a row with itself
will be n− 1.

Multiplying ( 1
n
Ĥ)(ĤT − J) is equivalent to looking at dot products of rows in 1

n
Ĥ and

rows in Ĥ − J . If the rows are the same, the result will be 1
n
((n − 1) − (−1)) = 1; and if

the rows are distinct the result will be 1
n
((−1) − (−1)) = 0. In particular, the result is the

identity matrix, establishing the inverse.

The preceding can be used to give a new proof that all Laplacian eigenvalues of a
Hadamard diagonalizable graph are even integers

Proof that the eigenvalues are even integers. We have⎡⎢⎢⎢⎣
λ2

λ3
...
λn

⎤⎥⎥⎥⎦ = (ĤT − J)

⎡⎢⎢⎢⎣
L12

L13
...

L1n

⎤⎥⎥⎥⎦ .

Since the entries in ĤT − J are in {0,−2} while the entries in the entries in L12, . . . , L1n are
in {0,−1}, the result of multiplying will be a vector of eigenvalues which are even.

Using Proposition 3.1, given our Hadamard matrix we can narrow our search space down
to size 2n−1 by looking at all possible {−1, 0} assignments to L1,2, . . . , L1,n. Not every
assignment will correspond to a graph as there might be other entries Li,j /∈ {−1, 0}; it is
also possible to construct the same graph multiple ways (e.g. the same up to relabeling).

To further speed up the search we start by rewriting all of the off-diagonal entries of L
as linear combinations of L12, . . . , L1n. (This can be done since each entry is some linear
combination of the λ2, . . . , λn and then the proof of Proposition 3.1 show that each of the λi

is a linear combination of L12, . . . , L1n.)
To illustrate this we carry this procedure out for the Hadamard matrix had.16.1 from

Sloane [5] to produce an auxiliary matrix. For the 120 entries above the diagonal (by symme-
try the entries below the diagonal will be equal) there were 27 different linear combinations.
The auxiliary matrix is given in Table 2 where each row represents a linear combination
and the columns correspond to the entries in the first row. For notational convenience we
have labeled the rows and columns using hexadecimal and we have indicated which entries
correspond to which linear combinations.

Looking at the auxiliary matrix in Table 2, the identity matrix of the first 15 rows is a
reflection that the linear combination to produce an entry from the first row is trivial.

Let us view an assignment of L12, . . . , L1n as selecting some subset of the columns (so if
the corresponding entry is −1 take the column; if it is 0 do not take the column). Then this
will produce a Laplacian matrix for a graph if and only if the sum of the columns produce
a 0-1 vector. Since this is the only case when the off-diagonal entries will be 0 and −1.

So to reduce the search space we explore all subsets of columns by deciding in a forest-like
exploration of the space where at each stage we decide to either add or not add a particular
column. After we add a particular column we then do a check if for each entry there is a
possibility that some combination of the remaining columns can result in the value to be 0
or 1; if not then we prune the tree and don’t explore any further on that branch.
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Table 2: The auxiliary matrix for the Hadamard matrix had.16.1 where the rows correspond
with linear combinations in terms of the off-diagonal entries in the first row. At the bottom
for each row we indicate which entries Lij with i, j in hexadecimal to which the linear
combination corresponds.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1

2
1
2

0 0 0 0 0 0 1
2

−1
2

0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 −1
2

1
2

0 0 0 1
2

1
2

0 0 0 0 0 0 1
2

−1
2

0 0
0 0 0 1

2
1
2

0 0 0 0 0 0 −1
2

1
2

0 0
0 0 0 0 0 1

2
−1

2
0 0 0 0 0 0 1

2
1
2

0 0 0 0 0 −1
2

1
2

0 0 0 0 0 0 1
2

1
2

0 0 0 1
2

−1
2

0 0 0 0 0 0 1
2

1
2

0 0
0 0 0 −1

2
1
2

0 0 0 0 0 0 1
2

1
2

0 0
0 1

2
1
2

0 0 0 0 0 0 1
2

−1
2

0 0 0 0
0 1

2
1
2

0 0 0 0 0 0 −1
2

1
2

0 0 0 0
0 1

2
−1

2
0 0 0 0 0 0 1

2
1
2

0 0 0 0
0 −1

2
1
2

0 0 0 0 0 0 1
2

1
2

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Row Entries
1 01, 23, 45, 67, 89, AB,CD,EF
2 02, 13, 8A, 9B
3 03, 12, 8B, 9A
4 04, 15, 8C, 9D
5 05, 14, 8D, 9C
6 06, 17, 8E, 9F
7 07, 16, 8F, 9E
8 08, 19, 2A, 3B, 4C, 5D, 6E, 7F
9 09, 18, 2B, 3A, 4D, 5C, 6F, 7E

Row Entries
10 0A, 1B, 28, 39
11 0B, 1A, 29, 38
12 0C, 1D, 48, 59
13 0D, 1C, 49, 58
14 0E, 1F, 68, 79
15 0F, 1E, 69, 78
16 24, 35, AC,BD
17 25, 34, AD,BC
18 26, 37, AE,BF

Row Entries
19 27, 36, AF,BE
20 2C, 3D, 4A, 5B
21 2D, 3C, 4B, 5A
22 2E, 3F, 6A, 7B
23 2F, 3E, 6B, 7A
24 46, 57, CE,DF
25 47, 56, CF,DE
26 4E, 5F, 6C, 7D
27 4F, 5E, 6D, 7C
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For example, if we take the columns 2, 3, 11 then the last entry will be 1/2 and the
remaining available entries in the remaining columns are 0. So no matter which combination
of columns 12, 13, 14, 15 we take we can never change that value from 1/2 and so there is no
need to explore that part of the space. To get the most out of this it is useful to first presort
the columns so that such conflicts will arise early.

If you get down to a leaf in the tree and the resulting combination of columns is a 0-1
vector, then we have found a Hadamard diagonalizable graph. To find the graph we find
where the 1s are located and the corresponding entries to which they correspond. These
corresponding entries match with the edges in the graph. As an example if we take the sum
of the first three columns in Table 2 then this will produce a 1 in the rows of the resulting
vector 1, 2, 3, 24, 25. So this will be the graph on the vertex set with vertices {0, 1, . . . , F}
and with edges

01, 23, 45, 67, 89, AB,CD,EF  
row 1

, 02, 13, 8A, 9B  
row 2

, 03, 12, 8B, 9A  
row 3

, 46, 57, CE,DF  
row 24

, 47, 56, CF,DE  
row 25

which becomes the graph 4K4 (cliques on the vertices 0, 1, 2, 3; and 4, 5, 6, 7; and 8, 9, A,B;
and C,D,E, F ). As graphs are found they are then tested to see whether they have been
seen before and we only keep those graphs which have not been seen before; this can be
done, for example, by using canonical labeling methods.

The procedure outlined here was implemented in both Python/SageMath and C++ with
all computations done using integer computations. The only external call needed is to
determine which graphs are discovered up to isomorphism. The program can be downloaded
at http://lidicky.name/pub/hadamard/.

3.1 Equivalency of Hadamard matrices

We assumed that our Hadamard matrices have the form where the first row and column
consists of all 1s. Given that for the Laplacian matrix one of the eigenvalues will be 0 with
the all 1s eigenvalue this is a reasonable assumption to start with.

Note that a given Hadamard matrix is equivalent to possibly many such matrices where
the first row and column consists of all 1s. To see this we can start with any Hadamard
matrix and pick any column to be moved to the front. We can then multiply the rows by
−1 as needed to make the first column consist of all 1s; and finally we multiply the columns
by −1 as needed to make the first row consist of all 1s.

This raises the possibility that for any Hadamard matrix of order n we have potentially
up to n different equivalent forms that need to be checked. Our calculations support the
following conjecture.

Conjecture 3.2. If H1 and H2 are equivalent Hadamard matrices which consist of 1 in the
first row and first column, then G is Hadamard diagonalizable by H1 if and only if G (up to
some relabeling) is Hadamard diagonalizable by H2.

If true, this conjecture would significantly shorten the computational time.
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4 Hadamard diagonalizable graphs of small order

For orders 4, 12, 20, 28, 36, . . . it follows from Section 2 that as long as Hadamard matrices ex-
ist there are exactly four Hadamard diagonalizable graphs, namely Kn, Kn/2,n/2, 2Kn/2, nK1.

For order 8 there is a unique Hadamard matrix and it is the Sylvester construction.
So the Hadamard diagonalizable graphs have been determined [3] and consist of all Cayley
graphs for Z2 × Z2 × Z2.

4.1 Order 16

As mentioned, there are 5 inequivalent Hadamard matrices of order 16, denote them by
had.16.j for j = 0, 1, 2, 3, 4 [5], with had.16.0 being the Sylvester matrix. Now denote the
set of graphs diagonalizable by had.16.j by Sj. Then

• |S0| = 46, |S1| = 50, |S2| = 48, |S3| = 10, |S4| = 24,

• S3 ⊂ S4 ⊂ S0, S2 ⊂ S1, S0 ⊂ S1, and |S0\S2| = 2 (therefore |S2\S0| = 4, and
S0 ∪ S2 = S1),

• S0 consists of all the non-isomorphic cubelike graphs on 16 vertices (Cayley graphs in
Z4

2).

In the following,Hn,n denotes the crown graph: the graph obtained fromKn,n by removing
a perfect matching, Kr(t) denotes the complete r-partite graph with t vertices in each part.

To describe the special graphs in the differences, we make use of one special operation
on graphs of the same order:
Assume G1 and G2 are two graphs with the same vertex set. Then the graph with adjacency

matrix

[
A(G1) A(G2)
A(G2) A(G1)

]
is denoted by G1 ⋉G2. If G1 and G2 have disjoint edge sets, then

G1 ⋉ G2 is a double cover of the graph whose adjacency matrix is A(G1) + A(G2) [2]. For
some visualization of this operation, see [3]: take 2G1, for each of its vertex v, connect v to
all its neighbors’ images in the other copy. The operation depends on the ordering of vertices
of G1 and G2, so when using it to describe a graph, we also give the labelling of G1 and G2.

First we list the exact 10 graphs diagonalizable by all the 5 inequivalent Hadamard
matrices, see Table 3, and the 24 graphs diagonalizable by all of them but had.16.3, see
Table 4.

Table 3: Graphs diagonalizable by had.16.3
G Gc ID

G1 Kc
16 K16 (1)− (10)

G2 K8,8 2K8 (2)− (8)
G3 2K4,4 (2K4) ∨ (2K4) (3)− (9)
G4 4K4 K4 ≀Kc

4
∼= K4(4) (4)− (6)

G5 (K2□K4) ≀ (Kc
2) H4,4 ≀K2 (5)− (7)
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Table 4: Graphs diagonalizable by had.16.4
G Gc ID

G1 Kc
16 K16 (1)− (24)

G2 8K2 (8K2)
c (2)− (23)

G3 K8,8 2K8 (3)− (18)
G4 4C4 K4 ≀ (2K2) (4)− (22)
G5 2K4,4 (2K4) ∨ (2K4) (5)− (21)
G6 4K4 K4 ≀Kc

4
∼= K4(4) (6)− (11)

G7 H8,8 + 1F K2□(4K2)
c (7)− (16)

G8 (4K2) ∨ (4K2) 2(4K2)
c (8)− (14)

G9 (K2□K4) ≀ (Kc
2) H4,4 ≀K2 (9)− (17)

G10 (2C4) ∨ (2C4) 2[(2K2) ∨ (2K2)] (10)− (12)
G11 (K2□K4) ≀ (K2) H4,4 ≀Kc

2 (13)− (20)
G12 K2□K8 H8,8 (15)− (19)

As mentioned at the beginning of this section, there is only a pair of cubelike graphs that
are not diagonalizable by had.16.2 (that is, they are diagonalizable by had.16.0, but not
had.16.2), they are given in Table 5, where

SS1 = {(0001), (0010), (1001), (1010), (1011), (1101), (1110), (1111)}
SS2 = {(0011), (0100), (0101), (0110), (0111), (1000), (1100)}.

Table 5: The only pair of cubelike graphs that are not diagonalizable by had.16.2
G Gc ID

G1

Z4
2(S1) ∼=

(2C4)⋉ (4K2)
c

Z4
2(S2) ∼=

K2□[(2K2) ∨ (2K2)] +K2 × (4K2) (12)− (35)

1 2

34

5 6

78 1 2 3 4

5 6 7 8
2C4 4K2

There are two pairs of graphs that are diagonalizable by had.16.2 but not by had.16.0,
that is, they are diagonalizable by had.16.2 but are not cubelike graphs. They are still
Cayley graphs, but on the group Z2

4. The four graphs are listed in Table 6. Note that G2,
the Shrikhande graph is a subgraph of G1. The two graphs in Table 5 (cubelike graphs) and
Table 6 (not cubelike graphs), together with the other 44 cubelike graphs, gives all the 50
graphs on 16 vertices that are Hadamard diagonalizable.
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Table 6: Graphs diagonalizable by had.16.3
G ID

G1 Z2
4({±(0, 1), (0, 2),±(1, 0),±(1, 1)}) (37)

Gc
1 Z2

4({±(1,−1),±(1, 2),±(2, 1), (2, 0), (2, 2)}) (15)
G2 Z2

4({±(0, 1),±(1, 0),±(1, 1)}), called Shrikhande graph (31)
Gc

2 Z2
4({±(1,−1),±(1, 2),±(2, 1), (0, 2), (2, 0), (2, 2)}) (26)

4.2 Order 24

Now we give all the 26 graphs on 24 vertices that are Hadamard diagonalizable. Let Qn

denote the n-cube, B1 = {±(0, 1, 0), (0, 1,±1), (0, 2,±1), (0, 0,±1),±(1, 1, 0)} ⊆ Z2×Z3×Z4,
B2 = {(0, 0, 2),±(0, 1, 2), (1, 0, 0),±(1, 0, 1), (1, 0, 2),±(1, 1, 1),±(1, 1, 2),±(1, 1, 3)} ⊆ Z2 ×
Z3 × Z4, B3 = {(0, 0,±1), (0, 1, 0), (0, 1,±1), (0, 1,±2), (0, 1, 3), (1, 0,±1), (1, 0, 3)} ⊆ Z2 ×
Z2×Z6, B4 = {(0, 0,±2), (0, 0, 3), (1, 0,±2), (1, 1, 0), (1, 1,±1), (1, 0, 0), (1, 1,±2), (1, 1, 0)} ⊆
Z2 × Z2 × Z6.

4.3 wreath/lexicographic product

The wreath product of two Hadamard diagonalizable graph is Hadamard diagonalizable.

Theorem 4.1. Assume that the graph G1 on m vertices is diagonalizable by a normalized
Hadamard matrix H1, the graph G2 on n vertices is diagonalizable by a normalized Hadamard
matrix H2. Then the wreath product G1 ≀G2 of G1 and G2 is diagonalizable by the Hadamard
matrix H1 ⊗H2

Proof. Assume that H1 diagonalizes A(G1) to Λ1, and H2 diagonalizes A(G2) to Λ2. Since
for any graph G, L(G) is diagonalizable by a Hadamard matrix H if and only A(G) is
diagonalizable by H (Hadamard diagonalizable graphs are regular), we show that A(G1 ≀
G2) = A(G1 ≀G2) = Im⊗A(G2)+A(G1)⊗Jn is diagonalizable by the normalized Hadamard
matrix H1⊗H2 instead. Now for any normalized Hadamard matrix H of size n, H−1JnH =
ne1e

T
1 = nE1,1, we have

(H1 ⊗H2)
−1A(G1 ≀G2)H1 ⊗H2)

= (H1 ⊗H2)
−1(Im ⊗ A(G2) + A(G1)⊗ In)H1 ⊗H2)

= H−1
1 ImH1 ⊗H−1

2 A(G2)H2 +H−1
1 A(G1)H1 ⊗H−1

2 AJnH2

= Im ⊗ Λ2 + nΛ1 ⊗ E1,1,

which is a diagonal matrix.

4.4 Order 32

The calculation for order 32 was performed by a program written in C++ by Lidický. The
program uses nauty [4] for graph isomorphism testing. To speed up the calculation, it utilized
parallel [6]. The calculation was performed on a server maintained by the Department of
Applied Mathematics at Charles University in Prague. The source codes and outputs can be
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Table 7: Graphs diagonalizable by had.24
G Gc ID

G1 Kc
24 K24 (1)− (26)

G2 12K2 (12K2)
c (2)− (25)

G3 K12,12 2K12 (3)− (20)
G4 2K6,6 (2K6) ∨ (2K6) (4)− (23)
G5 2(K12 − 6K2) (6K2) ∨ (6K2) (5)− (15)

G6

Z2 × Z3 × Z4(B1) ∼=
(C4 ≀K3)⊙ (4C3)

Z2 × Z3 × Z4(B2) ∼=
(C4 ≀Kc

3)⊙ (4C3)
c +K2□(C4 ≀Kc

3) (6)− (18)

1 2

34

1

2

3 4

5

6

. . .

C4 4C3

G7 (K2□K4) ≀Kc
3 Q3 ≀K3 (7)− (19)

G8 K2□K6,6 (2K6) ∨ (2K6)− 12K2 (8)− (22)
G9 (K6,6 − 6K2) ∨ (K6,6 − 6K2) 2(K2□K6) (9)− (14)
G10 K4 ≀Kc

6 4K6 (10)− (11)

G11

Z2 × Z2 × Z6(B3) ∼=
(C6 ∨ C6)⊙ (2K3,3)

Z2 × Z2 × Z6(B4) ∼=
(2(K2□K3))⊙K4(3) (12)− (16)

1

2

3

4

5

6

1

2

3

4

5

6

C6 2K3,3

G12 2(K6,6 − 6K2) (K2□K6) ∨ (K2□K6) (13)− (24)
G13 H12,12 K2□K12 (17)− (21)

downloaded from http://lidicky.name/pub/hadamard/. We also provide an example how
to load the Hadamard graphs to SAGE and explore their properties. The calculation took
179,736,390 seconds of CPU time, which was about 2 months of real time due to parallel
processing. If Conjecture 3.2 was true, the calculation would take 2 days.

5 Conclusion

The obstacles with moving forward with larger Hadamard matrices consists both in terms
of the size of the computations for any individual Hadamard matrix combined with a lack
of the classification of all Hadamard matrices of order 36 or above.

We can run the computation on some known Hadamard matrices and we summarize the
computation results in Table 8.
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Table 8: Some Hadamard matrices from Sloane [5] and the number of graphs for which that
matrix Hadamard diagonalizes the graph.

Hadamard matrix Number of H. graphs
had.40.tpal 26
had.40.ttoncheviv 26
had.40.twill 26
had.48.pal 4
had.56.tpal2 26
had.56.twll 26

For the three Hadamard matrices of order 40 the 26 graphs are the same; similarly for
the two Hadamard matrices of order 56. The data, combined with what we know for order
24 suggests the following.

Conjecture 5.1. For n = 24+16k there are exactly 26 distinct graphs which are Hadamard
diagonalizable for some Hadamard matrix of order n.

A proof of this might follow along the lines of that carried out for n = 4+8k; on the other
hand it might be false and so to disprove it then computations should be run for additional
Hadamard matrices of order 40 or 56 to find additional graphs.

The Hadamard matrix of order 48 from Sloane [5] has few Hadamard diagonalizable
graphs. When we reran the computation using the Hadamard matrix generated by SAGE

there were 762 distinct Hadamard diagonalizable graphs. Given the lack of classification for
Hadamard matrices of order 48 it is not clear how to determine all Hadamard diagonalizable
graphs of order 48.

One of the motivations for exploring Hadamard diagonalizable graphs is that these graphs
correspond to graphs which exhibit perfect state transfer in quantum walks. A more thorough
investigation of the Hadamard diagonalizable graphs of order 32 could yield further insight
into the phenomenon on perfect state transfer.
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