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Abstract4

Borrowing László Székely’s lively expression, we show that Hill’s conjecture is5

“asymptotically at least 98.5% true”. This long-standing conjecture states that the6

crossing number cr(Kn) of the complete graph Kn is H(n) := 1
4b

n
2 cb

n−1
2 cb

n−2
2 cb

n−3
2 c,7

for all n ≥ 3. This has been verified only for n ≤ 12. Using flag algebras, Norin8

and Zwols obtained the best known asymptotic lower bound for the crossing number9

of complete bipartite graphs, from which it follows that for every sufficiently large n,10

cr(Kn) > 0.905H(n). Also using flag algebras, we prove that asymptotically cr(Kn) is11

at least 0.985H(n). We also show that the spherical geodesic crossing number of Kn12

is asymptotically at least 0.996H(n).13

1 Introduction14

A long standing open problem in topological graph theory is to determine the crossing15

number of the complete graph Kn. We recall that the crossing number cr(G) of a graph G16

is the minimum number of pairwise crossings of edges in a drawing of G in the plane.17

1.1 Our main results18

As narrated in the illustrative survey by Beineke and Wilson [14], the problem of estimating19

the crossing number of complete graphs seems to have been first explored by the British20

artist Anthony Hill in the late 1950s. Hill found a construction that yields a drawing of Kn21

with exactly 1
4
bn
2
cbn−1

2
cbn−2

2
cbn−3

2
c crossings, for every integer n ≥ 3 [24]. In that paper, the22

following conjecture was put forward:23
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Conjecture. (Hill’s conjecture)24

25

cr(Kn) = H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋⌊n− 3

2

⌋
.26

27

As we recall below in our discussion of previous work, Hill’s conjecture has been only veri-28

fied for n ≤ 12, and it follows from work by Norin and Zwols [34] that limn→∞ cr(Kn)/H(n) >29

0.905. Our main result in this paper is the following.30

Theorem 1.

lim
n→∞

cr(Kn)

H(n)
> 0.98559895.31

We also investigate spherical drawings of Kn. We recall that in a spherical geodesic32

drawing of a graph, the host surface is the sphere, and each edge is a minimum distance33

geodesic arc joining its endpoints. The spherical geodesic crossing number crS2(G) of a graph34

G is the minimum number of crossings in a spherical geodesic drawing of G. This crossing35

number variant is of interest not only naturally in its own, but also by its connection, unveiled36

by Wagner [44], to the Spherical Generalized Upper Bound Conjecture.37

We note that Hill’s conjecture also applies to spherical geodesic drawings, since Hill’s38

construction can be realized as a spherical geodesic drawing. Using analogous techniques as39

in the proof of Theorem 1, we show the following.40

Theorem 2.

lim
n→∞

crS2(Kn)

H(n)
> 0.99635588.41

Actually we prove this last bound not only for spherical geodesic drawings, but for the42

more general class of convex drawings [7, 8]. A drawing D of Kn in the sphere is convex43

if, for every 3-cycle C, there is a closed disc ∆ bounded by C with the following property:44

for any two vertices u, v contained in ∆, the edge uv is contained in ∆. We prove that the45

bound in Theorem 2 holds for convex drawings. Thus in particular it holds for spherical46

geodesic drawings, as it is easy to see that these drawings are convex.47

1.2 Previous work on Hill’s conjecture48

We are aware of three distinct constructions that yield drawings of Kn with exactly H(n)49

crossings. Hill’s construction [24] produces cylindrical drawings, which are drawings in which50

the vertices are drawn on two concentric circles, and no edge intersects any of these circles,51

except at its endpoints. Blažek and Koman’s construction [15] yields 2-page drawings of Kn,52

that is, drawings in which every vertex lies on the x-axis, and each edge lies (except for its53

endpoints) either in the upper or in the lower halfplane. Very recently, Ábrego, Aichholzer,54

Fernández-Merchant, Ramos, and Vogtenhuber [6] described a variant of Hill’s construction55

that yields drawings of Kn with H(n) crossings, for every odd n ≥ 11.56
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Hill’s conjecture has been verified both for 2-page [4] and for cylindrical [5] drawings. It is57

also known that the conjecture holds for monotone drawings, that is, drawings in which each58

edge is drawn as an x-monotone curve [3, 11]. The new construction in [6] yields drawings59

that are neither 2-page nor cylindrical, but they satisfy a property called bishellability. In60

[2], it was proved that Hill’s conjecture holds for bishellable drawings. This last result61

implies Hill’s conjecture for 2-page, cylindrical, and monotone drawings, as all these classes62

of drawings are bishellable.63

A straightforward counting argument shows that if Hill’s conjecture holds for some odd64

n, then it also holds for n + 1. In its full generality (that is, not for specific classes of65

drawings), the conjecture has only been verified for n ≤ 12. For n ≤ 10 this appears to66

have been reported first in [23]; recently, McQuillan and Richter [32] gave a computer-free67

verification of Hill’s conjecture for n = 9 (and, by the previous observation, for n = 10). Pan68

and Richter [36] gave a computer-assisted proof for n = 11 (and hence for n = 12). Hill’s69

conjecture for n ≤ 12 has also been verified in [1]. This last computer-assisted verification70

was done under the setting of rotation systems, a framework on which we also heavily rely71

in this work.72

The conjecture for n = 13 states that cr(K13) = 225. An elementary counting using73

cr(K11) = H(11) = 100 shows that cr(K13) ≥ 217. McQuillan, Pan, and Richter [30] have74

ruled out the possibility that cr(K13) = 217, and since cr(K13) is an odd number [31], it75

follows that cr(K13) ∈ {219, 221, 223, 225}. This was further narrowed in [1], finding that76

cr(K13) ∈ {223, 225}.77

An elementary counting using that cr(K13) ≥ 223 shows that cr(Kn) ≥ 223
17160

n(n−1)(n−78

2)(n− 3) > (0.8317 + o(1)) H(n). However, the best general lower bounds known for cr(Kn)79

are obtained by exploiting the close relationship between the crossing numbers of complete80

and complete bipartite graphs.81

Recall that Zarankiewicz’s conjecture states that cr(Kp,q) := Z(p, q) :=
⌊
p
2

⌋⌊
p−1
2

⌋⌊
q
2

⌋⌊
q−1
2

⌋
,82

for all positive integers p, q [14, 22, 43]. It follows from a result in [41] that83

L1 := lim
n→∞

cr(Kn,n)

Z(n, n)
and L2 := lim

n→∞

cr(Kn)

H(n)
(1)84

both exist, and that L2 ≥ L1.85

A counting argument using that cr(K5,n) = Z(5, n) [26] implies that L1 ≥ 0.8. De Klerk,86

Maharry, Pasechnik, Richter, and Salazar [17] used semidefinite programming (SDP) tech-87

niques to give a lower bound on cr(K7,n), from which it follows that L1 > 0.83. De Klerk,88

Pasechnik, and Schrijver [18] also used SDP to give a lower bound on cr(K9,n), and from89

this bound it follows that L1 > 0.859. We also note that for each fixed integer m ≥ 3, it is a90

finite problem to decide whether or not Zarankiewicz’s conjecture holds for Km,n, for every91

n ≥ m [16].92

Norin and Zwols (unpublished; see [34]) used flag algebras to show that L1 > 0.905. By93

(1) this implies that limn→∞ cr(Kn)/H(n) > 0.905. Prior to our work, this was the best94

asymptotic lower bound known for cr(Kn).95

For a thorough recent survey of Zarankiewicz’s and Hill’s conjectures, we refer the reader96

to [42].97
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We finish this survey of previous results with a few words on the spherical geodesic98

crossing number. This notion was introduced by Moon [33], who proved the intriguing result99

that if one takes a random spherical drawing of Kn (n points are placed randomly in the100

sphere, and each pair of points is joined by a shortest geodesic arc), then the expected101

number of crossings, divided by H(n), is asymptotically 1. As far as we know, the best102

lower bound previously known for crS2(Kn) is the same (asymptotically at least 0.905) as103

for cr(Kn).104

1.3 An overview of our strategy105

Our proof makes essential use of flag algebras. This powerful tool, introduced by Razborov [38],106

has been the basis of several recent groundbreaking results in a variety of combinatorial and107

geometric problems, such as [10, 12, 13, 19, 25, 27, 37, 39], to name just a few.108

Although developed in a more general setting, flag algebras in particular provide a for-109

malism to tackle combinatorial problems of an extremal nature, in which a result of an110

asymptotic nature is seeked. Using flag algebras, one can find asymptotic estimates on the111

size of combinatorial objects, given some information on the structure of these objects for112

small size instances.113

In a nutshell, to prove Theorem 1 we exploit the fact that we have a complete understand-114

ing of all the good drawings of K7 [1], and thus of their rotation systems. (In Section 2.1115

we review the notions of a good drawing and of a rotation system). With this informa-116

tion, using flag algebras we show that out of the
(
n
4

)
drawings of K4 induced from a good117

drawing D of Kn (for every n sufficiently large), less than (roughly) 0.6305
(
n
4

)
can have 0118

crossings. Therefore D must have more than (1 − 0.6305)
(
n
4

)
= 0.3695

(
n
4

)
crossings, and119

thus cr(Kn) > 0.3695
(
n
4

)
. Theorem 1 is just an equivalent way of writing this last inequality,120

using a more precise rounding of the actually computed bounds.121

For Theorem 2 we proceed in an analogous manner. For this case, we use that we have122

the full catalogue of rotation systems that are induced from convex drawings of K8. We123

obtain that out of the
(
n
4

)
drawings of K4 induced from a convex drawing of Kn, less than124

(roughly) 0.6272
(
n
4

)
can have 0 crossings.125

A more detailed outline of our arguments is given in Section 2, where besides reviewing126

the concepts of good drawings and rotation systems, we introduce the notion of density,127

which plays a fundamental role in the theory of flag algebras. In Section 3 we state Theo-128

rems 3 and 4, two results in the language of flag algebras, and show that Theorems 1 and 2,129

respectively, follow as easy consequences. The rest of the paper is then devoted to the proof130

of Theorems 3 and 4.131

2 Densities and rotation systems132

In this section we introduce the concepts of rotation systems and densities, which are central133

to the proofs of Theorems 1 and 2. We will motivate the introduction of these notions by134

explaining their roles in the proof.135
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2.1 Densities in drawings of Kn136

We start by recalling that a drawing of a graph is good if (i) no two adjacent edges intersect,137

other at their common endvertex; (ii) no two edges intersect each other more than once; and138

(iii) every intersection of two nonadjacent edges is a crossing, rather than tangential.139

It is easy to show that every crossing-minimal drawing of a graph is necessarily good.140

Since we will only deal with crossing-minimal drawings (and with their induced subdrawings),141

we will assume throughout this work that all drawings under consideration are good.142

In our context, we aim to find an asymptotic lower bound for cr(Kn). It is easy to143

show that if D is a good drawing of Kn, then each of the
(
n
4

)
drawings of K4 induced by144

D has exactly 0 or 1 crossings. Each crossing appears in exactly one such K4, so our aim145

can be stated equivalently as follows: find an asymptotic upper bound for the proportion of146

non-crossing K4s in a drawing of Kn.147

Formally, for a drawing D of Kn let d( ;D) denote the probability that if we choose148

4 vertices at random from D, the corresponding drawing of K4 induced from D by these149

4 vertices has 0 crossings. Letting cr(D) denote the number of crossings in D, the above150

definition then implies that cr(D) =
(
1− d( ;D)

)(
n
4

)
. The notation hints to the unique151

(up to isomorphism) drawing of K4 with 0 crossings (see left hand side of Figure 1).152

Thus 0 ≤ d( ;D) ≤ 1 for any drawing D of Kn with n ≥ 4. Since K5 cannot be drawn153

without crossings, it follows that d( ;D) < 1 if D is a drawing of Kn with n = 5 (and,154

actually, for any integer n ≥ 5).155

An asymptotic reading of Hill’s conjecture is that cr(Kn) = (3/8)
(
n
4

)
+ O(n3), and so156

this conjecture predicts that d( ;D) is asymptotically at most (1 − 3/8) = 0.625. What157

we establish in this paper is that d( ;D) is asymptotically less than (roughly) 0.6305.158

Consequently, cr(Kn)/
(
n
4

)
is asymptotically greater than 1−0.6305 = 0.3695. An equivalent159

way to say this, as stated in Theorem 1, is that cr(Kn)/H(n) is greater than 0.3695/0.375 >160

0.985.161

Our approach consists of estimating d( ;D), where D is a crossing-minimal drawing of162

Kn for some large integer n, by exploiting our complete knowledge of all good drawings of163

Kn for small values of n, and in particular for n = 7 and n = 8.164

With Theorem 1 in mind, suppose for a moment that we limit ourselves to using the165

information that cr(K7) = 9. From this we obtain that for every drawing D7 of K7 we166

have d( ;D7) ≤ α := (1 − 9/
(
7
4

)
) ≈ 0.742. This readily implies that d( ;D) ≤ α for167

every drawing D of Kn with n ≥ 7. If there existed arbitrarily large such drawings D with168

d( ;D) = α, this would mean that each induced subdrawing of K7 is crossing-minimal.169

This is already impossible for n = 8: there are no drawings of K8 in which each induced170

subdrawing of K7 has exactly 9 crossings. Loosely speaking, it is not possible to “pack” 8171

crossing-minimal drawings of K7 into a drawing of K8. Our approach to get the much better172

estimate d( ;D) < 0.6305 (for large n) is to take the full catalogue of all the good drawings173

of K7, and use flag algebras to investigate how these can be packed into a good drawing of174

Kn, for large n.175
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2.2 Rotation systems176

To achieve this last goal, we start by turning the topological problem at hand into a com-177

binatorial one. Instead of considering directly drawings of complete graphs, we work with178

rotation systems. A rotation system combinatorially encodes valuable information of a draw-179

ing, by recording, for each vertex v, the cyclic order in which the edges incident with v leave180

v (see Figure 1). Thus the rotation system of a drawing of Kn is a collection of n cyclic181

permutations. In general, an abstract rotation system [28] on a set S of n elements is a collec-182

tion of n cyclic permutations, where each element s ∈ S has an assigned cyclic permutation183

of the other n − 1 elements, the rotation at s. We often use s:s1s2 . . . sn−1 to denote that184

the cyclic permutation assigned to s is s1s2 . . . sn−1. We say that S is the ground set of the185

abstract rotation system.186

Throughout this work, for brevity, we shall refer to an abstract rotation system simply187

as a rotation system.188

1

2

3

4

1 2

3
3

4
4

52

1

Figure 1: The left hand side drawing of K4 induces the rotation system N4 :=
{1:234, 2:134, 3:124, 4:132}. The drawing of K4 in the center induces the rotation system
{1:243, 2:143, 3:124, 4:123}. The drawing D3 of K5 on the right hand side induces the ro-
tation system {1:2543, 2:1435, 3:1542, 4:1532, 5:1243}. We remark that since the rotation at
each vertex is a cyclic permutation of the other vertices, we may alternatively write this last
rotation system, for instance, as {1:3254, 2:3514, 3:1542, 4:2153, 5:3124}.

189

Two rotation systems are isomorphic if each of them can be obtained from the other190

simply by a relabelling of its elements. An abstract rotation system is realizable (respec-191

tively, convex) if it is isomorphic to the rotation system induced by a good drawing of Kn192

(respectively, by a convex drawing of Kn). Every convex rotation system is realizable, as the193

set of convex drawings is a (proper) subset of the collection of good drawings.194

Given a rotation system R on a set S of n elements, and a subset S ′ of S, R natu-195

rally induces a rotation system (a rotation subsystem) on S ′, simply by removing from R196

all the appearences of the elements in S \ S ′. For instance, if R is the rotation system197
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{1:234, 2:143, 3:142, 4:123} on S = {1, 2, 3, 4}, and we let S ′ = {1, 2, 4}, then the rotation198

system on S ′ induced by R is R′ = {1:24, 2:14, 4:12}.199

2.3 Densities in rotation systems200

The notion of density of in a drawing of Kn gets naturally extended to rotations. In201

general, if R,R′ are rotation systems, then we let d(R′;R) denote the probability that a202

randomly chosen rotation system of R with |R′| elements is isomorphic to R′. Note that if203

|R′| > |R|, then d(R′;R) = 0.204

There is (up to isomorphism) a unique rotation system N4 on 4 elements induced by a205

drawing of K4 with no crossings; again we refer the reader to Figure 1, in whose caption N4206

is presented.207

For a (realizable or not) rotation system R on n ≥ 4 elements, let d(N4;R) denote the208

probability that a randomly chosen rotation subsystem of R with 4 elements is isomorphic to209

N4. Clearly, if R is realized by a drawing D of Kn, then d( ;D) = d(N4;R). Thus, in order210

to prove Theorem 1, it suffices to show that d(N4;R) < 0.6305 for every sufficiently large211

realizable rotation system R. For Theorem 2, we show that the bound d(N4;R) < 0.6272212

holds if R is convex.213

We know the family E7 of 22,730 non-isomorphic realizable rotation systems on 7 elements214

(this is discussed in Section 4). A trivial, but key observation, is that if R is a realizable215

rotation system on n ≥ 7 elements, then each of the rotation subsystems of R on 7 elements216

is (isomorphic to a rotation) in E7.217

What we show is that if R is a realizable rotation system on n elements such that each218

of its rotation subsystems on 7 elements is in E7, then d(N4;R) < 0.6305 (as long as R is219

sufficiently large). We show this by using tools from flag algebras. The size 22,730 turns out220

to be small enough to be handled with these techniques.221

For Theorem 2 we proceed in a similar way. The improvement over the general bound222

in Theorem 1 is obtained using the set C8 of convex realizable systems, which is also small223

enough (7,360 rotations) to use the flag algebras approach.224

3 Convergent subsequences of rotation systems:225

proof of Theorems 1 and 2226

In this section we show that Theorems 1 and 2 follow from two results on sequences of227

rotation systems. These statements involve the notion of convergence, from the flag algebras228

framework.229

Let R1, R2, . . . , be an infinite sequence of rotation systems, where |Ri| < |Ri+1| for230

i = 1, 2, . . .. The sequence R1, R2, . . . is convergent if, for each fixed rotation system R′, the231

sequence {d(R′;Ri)}∞i=1 converges.232

A standard compactness argument, using Tychonoff’s theorem, shows that every infinite233

sequence of rotation systems has a convergent subsequence. In particular, there exist con-234

vergent sequences of realizable, and of convex, rotation systems. Such convergent sequences235
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are the central objects in the next statements which, as we shall see shortly, easily imply236

Theorems 1 and 2, respectively.237

Theorem 3. Let R1, R2, . . . be a convergent sequence of realizable rotation systems. Then238

lim
i→∞

d(N4;Ri) < A :=
22064013752809590266065131421016

35000000000000000000000000000000
< 0.630400393.239

Theorem 4. Let R1, R2, . . . be a convergent sequence of convex rotation systems. Then240

lim
i→∞

d(N4;Ri) < B :=
43909978466574504806937629255000

70000000000000000000000000000000
< 0.627285407.241

The rest of this paper will be devoted to the proofs of these statements. We close this242

section by showing how Theorem 1 follows from Theorem 3. The proof that Theorem 2243

follows from Theorem 4 is totally analogous.244

Proof of Theorem 1, assuming Theorem 3. Let D1, D2, . . . be an infinite sequence of draw-245

ings such that, for i ∈ N, Di is a crossing-minimal drawing of Ki. For i ∈ N, let Ri be the246

rotation system induced by Di.247

A well-known argument using Tychonoff’s theorem shows that R1, R2, . . . has a con-248

vergent subsequence Rn(1), Rn(2), . . .. Since (as observed in Section 2.3) d(N4;Rn(i)) =249

d( ;Dn(i)) for i = 1, 2, . . ., from Theorem 3 we have limi→∞ d( ;Dn(i)) < A.250

The crossing-minimality of each Dn(i) means that cr(Kn(i)) = cr(Dn(i)) for i ∈ N. Now251

since cr(Dn(i)) =
(
1 − d( ;Dn(i))

)(
n
4

)
for each i ∈ N, the convergence of d( ;Dn(1)),252

d( ;Dn(2)), . . . to a number smaller than A implies that253

cr(Kn(1))(
n(1)
4

) ,
cr(Kn(2))(

n(2)
4

) , . . . (2)254

is a convergent sequence, whose limit is greater than 1− A.255

Since the sequence in (2) is a subsequence of the sequence {cr(Kn)/
(
n
4

)
}∞n=1, and this256

sequence is also convergent [41], then limn→∞ cr(Kn)/
(
n
4

)
> 1−A. Since limn→∞H(n)/

(
n
4

)
=257

3/8 = 0.375, then limn→∞ cr(Kn)/H(n) > (1− A)/0.375 > 0.98559895.258

4 Small rotation systems259

As described in Section 2, an essential ingredient in the proof of Theorem 3 is that we260

know the full collection of all non-isomorphic realizable rotation systems on 7 elements.261

Analogously, to prove Theorem 4 we use the collection of all non-isomorphic convex rotation262

systems on 8 elements.263

In this section we describe how these families are obtained.264
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4.1 Realizable rotation systems on 7 elements265

For each integer n ≥ 3, we use En to denote the set of all non-isomorphic realizable rotation266

systems on n elements.267

Aichholzer and Pammer wrote code to obtain all non-isomorphic realizable rotation sys-268

tems on n elements for n ≤ 9, with the results reported in [1, Table 1] (see also [35]). We269

note that in [1] a distinct notion of isomorphism (to the one used in this paper) is used.270

Let us say that two rotation systems R,R′ are equivalent if either R is isomorphic to R′, or271

if R′ is isomorphic to the system obtained by taking the inverse of each of the rotations in272

R (that is, if R′ is the inverse R−1 of R). Under this terminology, in [1] the collections of273

non-equivalent realizable rotation systems on n elements were reported, for all n ≤ 9.274

Thus the set Mn of non-equivalent realizable rotation systems on n elements can be275

obtained from En: if for some rotation R, both R and R−1 are in En, we remove one of them.276

Similarly, En can be easily obtained fromMn. First growMn by adding the inverse of each277

of its elements, and then run an isomorphism check to get rid of duplicates.278

D2 D3 D4D1 D5 D6

Figure 2: The six non-isomorphic drawings of K5. Here we adopt the point of view that
two drawings are isomorphic if there is an orientation-preserving self-homeomorphism of the
sphere that takes one into the other. If we dropped the orientation-preserving condition,
then D5 and D6 would be isomorphic.

279

We wrote code to obtain E7, proceeding as follows. First we obtain E5. To achieve this,280

it suffices to take the collection of non-isomorphic drawings of K5. Here we use the notion281

that two drawings are isomorphic if there is an orientation-preserving self-homeomorphism282

of the plane that takes one into the other. An easy exercise shows that there are exactly six283

non-isomorphic drawings of K5, namely the ones depicted in Figure 2. The class E5 consists284

of the rotation systems that correspond to these drawings.285

Aichholzer (private communication) noted, based on his results, that a rotation system286

on 6 elements is realizable if and only if each of its rotation subsystems on 5 elements is287

realizable. As Kynčl observed in [29, Sect. 1], it follows from this observation and [29,288

Theorem 1] that a rotation system on n ≥ 5 elements is realizable if and only if each of its289

rotation subsystems on 5 elements is realizable.290

From this last important observation it follows that the task of finding E6 is straightfor-291

ward. For each rotation in E5, we try all possible ways to extend it to a rotation system292
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on 6 elements, and for each of these possible ways, we test whether or not each of its rota-293

tion subsystems on 5 elements is in E5. Finally, we do an isomorphism check to get rid of294

duplicates, and finally obtain E6. To obtain E7 from E6 we follow an analogous procedure.295

The family E6 has 165 elements, and E7 has 22,730 elements. From these lists we gener-296

ated M6 and M7, which have 102 and 11,556 elements, respectively. These coincide with297

the collections reported in [1, Table 1], as kindly verified by Aichholzer (private communi-298

cation). The sets E6 and E7 are available at https://orion.math.iastate.edu/lidicky/299

pub/hill/.300

4.2 Convex rotation systems on 8 elements301

Arroyo, McQuillan, Richter, and Salazar [7] have characterized convex drawings of Kn as302

follows. A good drawing D of Kn, with n ≥ 5, is convex if and only if all its induced drawings303

of K5 are isomorphic to rectilinear drawings. It is well-known that up to isomorphism there304

are three such drawings of K5, namely D1, D2, and D3 in Figure 2.305

Thus in order to generate the collection Cn of convex rotation systems, for n ≥ 5, it306

suffices to follow the procedure described above to obtain En, but in this case the foundation307

C5 consists of the rotation systems that correspond to D1, D2, and D3. In this way we308

constructed C6, C7, and C8. This last collection consists of 7,360 rotation systems, thus being309

even more manageable, for a flag algebras treatment, than E7.310

We note that we do not really need the full characterization from [7]. We only need311

the easy “only if” part, which is readily verified by checking that D4, D5, and D6 are not312

convex. If we did not have the “if” part, we would still know that the class C8 we constructed313

contains the class of convex drawings. Thus our results, in particular Theorem 2, would still314

hold without this non-trivial direction of the characterization from [7].315

5 Flag algebras316

This section contains a brief introduction to the flag algebras framework, in the setting317

of rotation systems. For a more detailed and general exposition, see the original paper of318

Razborov [38]. For more accessible introductions to flag algebras, see for instance [10, 40].319

Throughout this discussion R is an infinite set of rotation systems, and for each ` ∈ N,320

R` is the set of all rotations in R with ` elements. For our cases of interest, in the next321

section we will take R to be the collection E of all realizable rotation systems (to prove322

Theorem 1), or the collection C of all convex rotation systems (to prove Theorem 2).323

For R ∈ R` and R′ ∈ R`′ , define p(R,R′) to be the probability that choosing ` vertices324

uniformly at random from R′ induces a rotation isomorphic to R. Note that p(R,R′) = 0 if325

` > `′.326

For R ∈ R, we denote by V (R) the ground set of R. We use V (R) to hint that we327

think of the ground elements of R as, and call them, vertices (after all, we are interested328

in rotation systems that are induced by drawings of Kn). Although evidently R is not a329

graph, the rotation systems that we will investigate come from drawings of Kn, and as such,330
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have an identity as vertices. We let v(R) := |V (R)|. Note that v(R) is also the number of331

elements (cyclic permutations) of R.332

We start by defining algebras A and Aσ, where σ is any rotation system in R. These333

algebras will be called flag algebras. Let RR be the set of all formal linear combinations of334

elements in R with real coefficients. Furthermore, let K be the linear subspace generated by335

all linear combinations of the form336

R−
∑

R′∈Rv(R)+1

p(R,R′) ·R′. (3)337

338

We define A as the space RR factorized by K. The space A comes with naturally defined op-339

erations of addition, and multiplication by a real number. To introduce the multiplication in340

A, we first define multiplication of two elements in R. For R1, R2 ∈ R, and R ∈ Rv(R1)+v(R2),341

we define p(R1, R2;R) to be the probability that for a randomly chosen subset I1 of V (R) of342

size v(R1), the rotation subsystems of R induced by I1 and I2 := V (R) \ I1 are isomorphic343

to R1 and R2, respectively. We set344

R1 ×R2 =
∑

R∈Rv(R1)+v(R2)

p(R1, R2;R) ·R.345

The multiplication in R has a unique linear extension to RR, which yields a well-defined346

multiplication also in A. A formal proof of this can be found in [38, Lemma 2.4].347

Now we introduce an algebra Aσ for each σ ∈ R. The element σ is usually called a348

type within the flag algebras framework. Without loss of generality, assume that the vertices349

of σ are labelled 1, 2, . . . , v(σ). Define Rσ to be the set of all elements in R with a fixed350

embedding of σ, i.e., an injective mapping θ from V (σ) to V (R) such that the image of θ,351

denoted by θ(V (σ)), induces in R a rotation isomorphic to σ. Following the customary flag352

algebras terminology, the elements of Rσ are σ-flags, and the rotation induced by θ(V (σ))353

is the root of a σ-flag.354

For every ` ∈ N, we define Rσ
` ⊂ Rσ to be the set of the σ-flags from Rσ that have size355

`. Analogously to the case for A, for two σ-flags R,R′ ∈ Rσ with embeddings of σ given356

by θ, θ′, we set p(R,R′) to be the probability that a randomly chosen subset of v(R)− v(σ)357

ground elements in V (R′) \ θ′(V (σ)) together with θ′(V (σ)) induces a substructure that is358

isomorphic to R through an isomorphism f that preserves the embedding of σ. In other359

words, the isomorphism f has to satisfy f(θ′) = θ. Let RRσ be the set of all formal linear360

combinations of elements of Rσ with real coefficients, and let Kσ be the linear subspace of361

RRσ generated by all the linear combinations of the form362

R−
∑

R′∈Rσ
v(R)+1

p(R,R′) ·R′.363

We define Aσ to be RRσ factorized by Kσ.364

We now proceed to define the multiplication of two elements from Rσ. Let R1, R2 ∈ Rσ,365

R ∈ Rσ
v(R1)+v(R2)−v(σ), and let θ be the fixed embedding of σ in R. Choose uniformly at366
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random a subset of X in V (R)\θ(V (σ)) of size v(R1)−v(σ). Let Y = V (R)\{θ(V (σ))∪Y }367

of size v(R2) − v(σ). We define p(R1, R2;R) to be the probability that X ∪ θ(V (σ)) and368

Y ∪θ(V (σ)) induce rotations isomorphic to R1 and R2, respectively. This definition naturally369

extends to Aσ.370

Consider an infinite sequence (Rn)n∈N, whereRn ∈ Rn. We note that the density d(R;Rn)371

used in Section 3 is simply p(R,Rn) in the current setting. We use p(R,Rn) in this section372

as this is the custom notation in flag algebras discussions. We recall from Section 3 that373

(Rn)n∈N is convergent if the sequence
(
p(R,Rn)

)
n∈N converges for every R ∈ R. A standard374

compactness argument using Tychonoff’s theorem yields that every infinite sequence has375

a convergent subsequence. Fix a convergent sequence (Rn)n∈N. For every R ∈ R, we set376

φ(R) = limn→∞ p(R,Rn) and linearly extend φ to A. We usually refer to the mapping φ377

as the limit of the sequence. The obtained mapping φ is a homomorphism from A to R.378

Note that for every R ∈ R we have φ(R) ≥ 0. Let Hom+(A,R) be the set of all such379

homomorphisms, i.e., the set of all homomorphisms ψ from the algebra A to R such that380

ψ(R) ≥ 0 for every R ∈ R. An interesting, crucial fact in the theory of flag algebras, is that381

this set is exactly the set of all limits of convergent sequences in R [38, Theorem 3.3].382

It is possible to define a homomorphism φσ from Aσ to R and an unlabelling operator383

J·Kσ : Aσ → A such that if φσ(Aσ) ≥ 0 for some Aσ ∈ Aσ, then φ(JAσKσ) ≥ 0. For details,384

see [38]. The unlabelling operator is very useful for generating non-obvious valid inequalities385

of the form φ(A) ≥ 0 for some A ∈ A. In particular, φ(J(Aσ)2Kσ) ≥ 0 is always a valid386

inequality, and the generation of these inequalities can be somewhat automated.387

6 Proof of Theorem 3388

Proof of Theorem 3. We use the flag algebras framework developed in the previous section,389

performing the calculations on E7. As we observed in Section 4, this set has cardinality390

22,730. We follow the convention from the previous section to think of the elements in the391

ground set of a rotation as vertices.392

We used 1803 labeled flags of 8 types σ1, . . . , σ8. Type σ1 is one labeled vertex and let393

F1 be Eσ14 . Type σ2 are three labeled vertices and let F2 be Eσ25 . Types σi for 3 ≤ i ≤ 8 are394

all labeled rotations on 5 vertices, namely the ones associated to the drawings in Figure 2.395

For 3 ≤ i ≤ 8, let Fi = Eσi6 . Notice that for all i we picked the sizes of flags in Fi such that396

the product of any two flags from Fi can be expressed in Eσi7 , and hence subsequently gives397

an equation in E7.398

The following holds for any φ ∈ Hom+(A,R). Let M1, . . . ,M8 be positive semidefinite399

matrices, where Mi has the same dimension as Fi for all i. Then400

0 ≤ φ

(∑
1≤i≤8

JF T
i MiFiKσi

)
= φ

(∑
R∈E7

cR ·R

)
, (4)401

where cR is a real number depending on M1, . . . ,M8 for each R. The expression (3) implies402
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that403

φ (N4) = φ

(∑
R∈E7

p(N4, R) ·R

)
.404

By combining this and (4) we obtain the following, where (we recall from Section 2) N4 is405

the rotation system that corresponds to :406

φ (N4) = φ

(∑
R∈E7

p(N4, R) ·R

)
≤ φ

(∑
R∈E7

(p(N4, R) + cR) ·R

)
.407

Let A be as in the statement of Theorem 3. By solving an instance of a semidefinite program,408

we found M1, . . . ,M8 such that409

p(N4, R) + cR ≤ A410

for all R ∈ E7. Noting that φ
(∑

R∈E7 R
)

= 1, we obtain411

φ (N4) ≤ φ

(∑
R∈E7

(p(N4, R) + cR) ·R

)
≤ A · φ

(∑
R∈E7

R

)
= A.412

Let R1, R2, . . . be a convergent sequence of realizable rotation systems. Since φ(N4) =413

limi→∞ p(N4, Ri) = limi→∞ d(N4;Ri), this last equation implies that limi→∞ d(N4;Ri) ≤ A <414

0.630400393, as claimed in Theorem 3.415

Due to space limitations, we provide E7, Fi and Mi for all i, as well as programs that416

perform the calculations, in electronic files at https://orion.math.iastate.edu/lidicky/417

pub/hill/.418

Proof of Theorem 2. In this case we performed the calculations on C8. We used 3664 labeled419

flags of 5 types σ1, . . . , σ5. Type σ1 is one labeled vertex and let F1 be Cσ14 , i.e., all realizable420

convex rotation systems on 4 vertices, where one vertex is labeled. Type σ2 are three labeled421

vertices and let F2 be Cσ25 . Types σi for 3 ≤ i ≤ 5 are all labeled rotations on 5 vertices,422

namely the ones associated to the drawings D1, D2, and D3 in Figure 2. For 3 ≤ i ≤ 5, let423

Fi = Cσi6 . Notice that for all i we picked the sizes of flags in Fi such that the product of any424

two flags from Fi can be expressed in Cσi8 , and hence subsequently gives an equation in C8.425

We can now pick up the proof of Theorem 1 at the paragraph that starts “The follow-426

ing holds. . . ”, with the following changes. Instead of having positive semidefinite matrices427

M1, . . . ,M8, we have only five positive semidefinite matrices M1, . . . ,M5 (here again each428

Mi has the same dimension as Fi). The first summation in (4) is now on 1 ≤ i ≤ 5, and429

every summation on R ∈ E7 gets replaced by a summation on R ∈ C8. Finally, instead of430

the constant A in Theorem 1, we have the constant B in Theorem 2.431

With these changes the proof carries over exactly as in the previous proof, finally obtain-432

ing that limi→∞ d(N4;Ri) ≤ B < 0.627285406.433

Due to space limitations, we provide C8, Fi and Mi for all i, as well as programs that434

perform the calculations, in electronic files at https://orion.math.iastate.edu/lidicky/435

pub/hill/.436
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7 Concluding remarks437

As we mentioned in Section 1, the flag algebras framework was used by Norin and Zwols [34]438

to attack another crossing number problem, namely Zarankiewicz’s conjecture. Recently,439

Goaoc, Hubard, De Joannis De Verclos, Sereni, and Volec [21] also used flag algebras to440

approach a related problem in discrete geometry, namely the density of k-tuples in convex441

position in point sets in the plane.442

Norin and Zwols computed all the good drawings of K3,4, and for each such drawing they443

recorded which pairs of edges cross each other. With this information, they used flag algebras444

to obtain the lower bound limn→∞ cr(Kn,n)/Z(n, n) > 0.905. In this paper we worked with445

rotation systems, but we note that this approach is equivalent to the alternative (à la Norin-446

Zwols) of computing all good drawings of K7 and recording, for each such drawing, which447

pairs of edges cross each other. This follows since from the rotation system of a drawing one448

can tell which pairs of edges cross each other in the drawing [9, 20].449

An earlier approach we tried involved associating to a good drawing D of Km the 4-450

uniform hypergraph HD whose vertices are the vertices of the drawing, and where four451

vertices form an edge if and only if the drawing of K4 induced from D on these four vertices452

has a crossing. We refer the reader to [42, Section 13.4] for a discussion on the connection453

between crossing number problems and Turán-type hypergraph problems. This approach,454

also using flag algebras, yielded a considerably weaker lower bound than the one in Theo-455

rem 1. Obtaining poorer bounds in this setting is quite natural since, as we recalled above,456

with the rotation system of a drawing one can tell not only which K4s have a crossing, but457

exactly which edges cross each other in a given K4.458

We are currently working on two separate approaches to apply flag algebras to obtain459

improved lower bounds on the rectilinear crossing number cr(Kn,n). We can currently show460

that limn→∞ cr(Kn,n)/Z(n, n) > 0.973, and we hope to get an even better lower bound461

when a set of ongoing calculations is completed. Together with Pfender and Norin, we had462

previously considered the special version of rectilinear drawings in which the partite classes463

are separated by a line. In this case, we got a lower bound of 0.99.464

Let us mention that it might be possible to improve the constants A and B in Theorems 3465

and 4 by a tiny amount. The matrices Mi in the proofs of these theorems were first obtained466

by a semidefinite programming solver. These matrices do not contain exact entries, and467

some small rounding was necessary to ensure that the Mis are indeed positive semidefinite468

and the evaluation of p(N4, R) + cR does not have any numerical errors. We have not tried469

to optimize the rounding process as we think the possible improvement is negligible.470

For Theorem 3, performing the calculations on E8 would likely provide a remarkable471

improvement. Unfortunately, the size of this set makes it out of reach for current computers.472

Similarly, for Theorem 4, performing the calculations on C9 would very likely result in a473

considerable improvement, but this set is also too big to be handled with computer power474

available at this time.475

Aichholzer (private communication) has verified that all crossing-minimal drawings of476

Kn, for n ≤ 12, are convex. Thus it seems reasonable to conjecture that all crossing-minimal477

drawings of Kn, for every integer n, are convex. If this were proved, the bound in Theorem 2478
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would apply for the crossing number of Kn.479
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