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Abstract. In edge deletion problems, we are given a graph G and a
graph property π and the task is to find a subset of edges the deletion
of which results in a subgraph of G satisfying the property π. Typically
the objective is to minimize the total number of deleted edges, while
in less common fair versions the objective is to minimize the maximum
number of edges removed from a single vertex. Since many fair edge
deletion problems are NP-hard for general graphs, in the first part of the
paper we restrict our attention to graphs with bounded tree-width, and
in the second part we concentrate on approximation algorithms for two
particular fair edge deletion problems on general graphs.
Many NP-hard problems become tractable when restricted to certain
classes of graphs. The Monadic Second-Order Logic (MSOL) provides a
rather general framework for dealing with NP-hard problems on graphs
with bounded tree-width. A classical result by Courcelle shows that every
problem expressible in MSOL can be solved in linear time for graphs with
bounded tree-width; though this result was extended in different ways,
none of them is suitable for fair edge deletion problems. Our main result
is that every problem expressible in MSOL is solvable in polynomial time
with the fair objective function, on graphs with bounded tree-width.
For general graphs, we focus our attention on the odd cycle transversal
problem (the task is to make a given graph bipartite), again under the fair
objective function; the problem being closely related to improper colorings
of graphs. We describe a Θ(

√
n)-approximation algorithm. Analogous

results hold for the minimum fair cut problem.

1 Introduction

Many problems in combinatorial optimization can be formulated as edge (or
node) deletion problems. Given a graph G = (V,E) and a graph property π
(e.g., being a tree, a bipartite graph or a series-parallel graph), the problem is to
find a subset of edges the deletion of which results in a subgraph of G satisfying
the property π [31]. Typically, the objective function is to minimize the total
number of deleted edges. (Since many edge deletion problems are NP-complete [5,
31], finding good approximation algorithms is an active and relevant area [2,
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3].) In this paper we study edge deletion problems under a different objective
function: our goal is to minimize the maximum number of edges removed from a
single vertex (i.e., we want to minimize the maximum degree in (V, F ) where F
is the set of deleted edges); such problems are called fair edge deletion problems.
For the fair objective function it is reasonable to deal also with, in some sense,
complementary problems. Given a graph G = (V,E) and a property π, find
a subset F of edges such that (V, F ) satisfies π and the degree of (V, F ) is as
small as possible; such problems are also called fair edge deletion problems in
this paper. Informally, in both cases, instead of minimizing the total cost, we
aim at minimizing the maximum cost at a vertex (in the first case, we have
to pay for what is removed, in the second case for what remains). As we shall
see, such problems have both a theoretical appeal and a relevance for practical
applications.

Lin and Sahni [26] coined the term fair edge deletion problems when dealing
with the following problem: given a graph G = (V,E), find a subset F of edges
such that (V,E \ F ) is a spanning tree, and the maximum degree of the graph
(V, F ) is as small as possible. They proved that the problem is NP-complete.
Surprisingly enough, not many edge deletion problems were studied with the
aforementioned fair objective function. Yet, such an objective function arises
naturally in various contexts. As an example consider the (`, k)-coloring problem:
given a graph G = (V,E) and integers ` and k, partition V into ` parts such that
each part induces a subgraph of G with maximum degree at most k.

Graphs with bounded tree-width. Many NP-hard problems become tractable when
restricted to certain classes of graphs. Since its introduction [7, 29], the class of
graphs with bounded tree-width gained a considerable amount of attention, in
particular with respect to the design of polynomial time algorithms for problems
that are NP-hard on general graphs. The Monadic Second-Order Logic (see
Sec. 2 for the definition) provides a rather general framework for dealing with
NP-hard problems on graphs with bounded tree-width. It has been shown that
every problem expressible in MSOL can be solved in linear time on graphs with
bounded tree-width [4, 10, 15]. Although the MSOL is sufficient for dealing with
many problems, many others do not fit in this framework. This motivated several
extensions of the MSOL [11, 16].

In this paper, we go along those lines and extend the previous work in yet
another direction that makes it possible to deal with several problems that do
not fit into any of the previously known frameworks. Our main result shows that
for properties expressible in MSOL, fair edge deletion problems are solvable in
polynomial time on graphs of bounded tree-width (Section 3). To this end, we
adopt and extend the techniques used by Borie et al. [12]. Though our proof does
not use any substantially new techniques, the result is far from obvious and, as
far as we know, was not known earlier.

As a corollary of our main result, we show, that for any fixed `, the (`, k)-
coloring problem on graphs with bounded tree-width is solvable in polynomial
time, where k is any integer. (Note that for any fixed k, the results of Rao [28]



imply that the (`, k)-coloring problem on graphs of bounded tree-width is solvable
in polynomial time, where ` is any integer.)

General graphs. We focus on the fair odd cycle transversal problem. An odd
cycle transversal (OCT) of a graph G = (V,E) is a subset F ⊆ E of edges such
that the graph (V,E \ F ) is bipartite. The minimum OCT problem (also known
as the odd-cycle edge cover [25], as the maximum cut problem [20] and as the
minimum uncut problem [1]) consists in finding an OCT of minimum size. The
minimum fair OCT, on the other hand, consists in finding an OCT F such that
the maximum degree of (V, F ) is as small as possible.

OCTs are closely related to improper colorings (also known as defective
colorings). Note that a graph has a solution to the (2, k)-coloring problem if
and only if the optimum value of the minimum fair OCT problem is at most
k. Improper colorings are a natural generalization of the usual notion of a
proper coloring, a core topic of the graph theory; they have been introduced and
studied both as a theoretical notion [17, 23, 30] and as a tool to model practical
problems [22]. Let us point out that even for planar graphs, the (2, k)-coloring
problem is NP-complete [14, 18] and, thus, the minimum fair OCT is NP-hard
on planar graphs. On the other hand, the minimum OCT problem is solvable in
polynomial time on planar graphs [24] (though NP-hard for general graphs [19]).
(Note that the minimum OCT is solvable in polynomial time also on graphs with
bounded tree-width [9].)

The substantial difference between the complexity of the fair and the usual
versions of the OCT for planar graphs provides a momentum to study the
minimum fair OCT. Another reason to study the fair OCT is the lack of algorithms
for the (`, k)-coloring problems and, in particular, for the (2, k)-coloring problem.

We use linear programming to obtain a Θ(
√
n)-approximation algorithm for

graphs on n vertices and we show that the bound on the performance of the
algorithm is tight even for planar graphs (Section 4). Remarkably, the integrality
gap of the linear program is Ω(n). As we also observe, all our results extend to the
minimum fair cut problem: given a graph G = (V,E) and two vertices x, y ∈ V ,
the problem consists in finding an x-y cut F ⊆ E such that the maximum degree
of (V, F ) is as small as possible. Closely related is the matching cut problem: is
there a cut F in G that is also a matching? Chvátal [13] proved that for general
graphs, the problem is NP-hard.

Overview of the paper. Section 2 surveys the definitions and results about tree-
decomposable graphs and the MSOL that we will need later. In Section 3 we
deal with the fair edge deletion problems on tree-decomposable graphs and in
Section 4 with approximation algorithms for the minimum fair OCT and s-t-cut
problem on general graphs.

2 Tree-Decomposable Graphs and MSOL in a Nutshell

There are different yet more or less equivalent ways how to define tree-decomposable
graphs [8]. Though probably the most common way today is that of Robertson



and Seymour [29] (graphs of bounded tree-width), in this paper we decided to
use the notion of k-terminal graphs as defined by Borie [10]; this choice will make
it easier to link our results to previous work and present the proof of the new
result in a short way. We stress again that a graph G has tree-width bounded
by a constant if and only if G belongs to a class of tree-decomposable graphs as
defined below.

A k-terminal graph G = (V,E, T ) is a graph G = (V,E) with an ordered set
T of at most k distinguished vertices from V called terminals (the others being
the non-terminals). We stress that the number of terminals in a k-terminal graph
may be smaller than k.

A k-terminal graph composition operation constructs a new k-terminal graph
from several k-terminal graphs. A k-terminal composition operation ⊕ of ar-
ity m takes as arguments m k-terminal graphs G1 = (V1, E1, T1), . . . , Gm =
(Vm, Em, Tm) and out of them produces a new graph G with k′ terminals, for
some k′ ≤ k. The new graph is obtained by merging some of the terminal nodes
of the graphs G1, . . . , Gm together. In particular, the operation ⊕ specifies a
constant l⊕ ≥ 0 and

– for each i ∈ {1, . . . , k′}, a set Xi ⊆ ∪mj=1Tj such that |Xi ∩ Tj | 6 1 for each
j ∈ {1, ...,m}; the ith terminal of G is then produced by identifying the
terminals in Xi;

– for each i ∈ {1, . . . , l⊕}, a set X ′i ⊆ ∪mj=1Tj such that |X ′i ∩ Tj | 6 1 for each
j ∈ {1, . . . ,m}; the ith new non-terminal of G is then produced by identifying
the terminals in X ′i.

Moreover, the sets Xi for i ∈ {1, . . . ,m} and X ′i for i ∈ {1, . . . , l⊕} must be
pairwise disjoint.

We represent the operation ⊕ by a matrix M⊕ of size (k′ + l⊕)×m in the
following way: if i ≤ k′ then M⊕[i, j] is the index of the terminal of Gj that
belongs to Xi if there is one, and 0 otherwise; if i ∈ {k′ + 1, . . . , k′ + l⊕} then
M⊕[i, j] is the index of the terminal of Gj that belongs to X ′i if there is one, and
0 otherwise. For a vertex v ∈ V1∪ . . .∪Vm and for an edge e ∈ E1∪ . . .∪Em, it is
convenient to define σ⊕(v) and σ⊕(e) to be the vertex and the edge of G to which
v and e are mapped when we apply the operation ⊕(G1, . . . , Gm), respectively.
For a subset S of vertices or edges, σ(S) =

⋃
x∈S{σ(x)}.

Let B be a finite set of k-terminal graphs and let R be a finite set of
composition operations for k-terminal graphs; we call the graphs in B base
graphs. We define the k-terminal recursive family (B,R) to be the closure of B by
operations inR. A class of graphs C is said to be a class of tree-decomposable graphs
if there exist two sets B and R such that C = (B,R). A graph G = (V,E) from
a class C = (B,R) can be represented by a rooted labeled tree (a decomposition
tree of G) of size O(|V |) with leaves labeled by graphs from the set of base graphs
B and inner nodes labeled by composition operations from the set R. In this way
every node v of the decomposition tree of G corresponds to a unique graph Gv
from the class C.

The Monadic Second-Order Logic (MSOL) for graphs contains variables of
four different types (sorts): v, e,V and E, that is, variables for vertices, edges,



subsets of vertices and subsets of edges, respectively. If we need to specify the
type of a variable by its name, we adopt the convention that vi, ei, Vi and Ei
denote variables of types v, e,V and E, respectively. The set of primitive MSOL
predicates1 consists of vi = vj , Incident(vi, ej), vi ∈ Vj and ei ∈ Ej with the
obvious meanings. In counting MSOL [16], there are the additional primitive
predicates |Vi| = a (mod b) and |Ei| = a (mod b), with b ≥ 2 and 0 ≤ a < b.
If P and Q are (counting) MSOL predicates, then so are (¬P ), (P ∨ Q) and
(P ∧Q). If P is a (counting) MSOL predicate with a free variable x, then so are
(∃x)(P (x)) and (∀x)(P (x)).

Let P (x1, . . . , xt) be a (counting) MSOL predicate. For a graph G = (V,E),
we let Di be the domain of the variable xi in the model G, that is, Di is the set
V , E, 2V or 2E , depending on the type v, e, V or E of xi, respectively. Then,
given y1 ∈ D1, . . . , yt ∈ Dt, we define PG(y1, . . . , yt) to be the truth value of
the predicate P (x1, . . . , xt) in the model G. To distinguish between a (name of
a) variable and a value of a variable, we use xi for the former and yi for the
later (most of the time). Let xi be a variable with domain D. Let ?v and ?e be
two symbols that do not appear in V and E, respectively. We define D? to be
D ∪ {?v} if the type of xi is v, D ∪ {?e} if the type of xi is e, and D otherwise.

Let C = (B,R) be a class of tree-decomposable graphs and let P (x1, . . . , xt)
be a (counting) MSOL predicate with free variables x1, . . . , xt. A key concept in
the work of Borie et al. [12] (cf. [6]) is that of an equivalence classe of the set

BCP = {((V,E), y1, . . . , yt) | (V,E) ∈ C, y1 ∈ D?
1 , . . . , yt ∈ D?

t }

where Di is the domain of xi with respect to (V,E).
We say that (G1, y11, . . . , y1t), . . . , (Gm, ym1 . . . , ymt) ∈ BCP are compatible

with respect to the (m-ary) operation ⊕ ∈ R and the variable x` of the predicate
P (x1, . . . , xt), if the following holds (letting Vi and Ei be the vertex set and the
edge set of Gi, respectively).

– If x` is of type v, then either
(1.1) there exists an integer i such that for each j ∈ {1, . . . ,m}, if M⊕[i, j] 6= 0

then yj` is the M⊕[i, j]-th terminal of Gj , or
(1.2) y1` = y2` = . . . = ym` = ?v, or
(1.3) there exists j such that yj` ∈ Vj and yj′` = ?v for j′ 6= j;
– if x` is of type e, then either
(2.1) y1` = y2` = . . . = ym` = ?e, or
(2.2) there exists j such that yj` ∈ Ej and yj′` = ?e for j′ 6= j;
– if x` is of type V, then
(3.1) for each j ∈ {1, . . . ,m}, if yj` contains a terminal of Gj that participates

in the birth of the i-th terminal (or i-th non-terminal) of ⊕(G1, . . . , Gm),
then for each j′ 6= j, yj′` contains the M⊕[i, j′]-th terminal (or M⊕[k′ +
i, j′]-th terminal, respectively) of Gj′ where k′ is the number of terminals
of ⊕(G1, . . . , Gm);

1 Borie et al. use the name regular predicates instead of MSOL predicates.



We note that for each type of variable, the considered cases are mutually disjunc-
tive. The elements (G1, y11, . . . , y1t), . . . , (Gm, ym1 . . . , ymt) ∈ BCP are compatible
with respect to an m-ary operation ⊕ ∈ R and the predicate P (x1, . . . , xt) if they
are compatible with respect to every variable of P (x1, . . . , xt).

For every (m-ary) operation ⊕ ∈ R we now define an extension ⊕̄ that
assigns to every compatible m-tuple ((G1, y11, . . . , y1t), . . . , (Gm, ym1 . . . , ymt))
an element from BCP . In particular, ⊕̄((G1, y11, . . . , y1t), . . . , (Gm, ym1 . . . , ymt)) =
(G, y1, . . . , yt) where G = ⊕(G1, . . . , Gm) and yl, for 1 ≤ ` ≤ t, is defined as
follows:

– if x` is of type v, then in the case (1.1), y` is the i-th terminal of G, in the
case (1.2), y` = ?v, and in the case (1.3), y` = yjl;

– if x` is of type e, then in the case (2.1), y` = ?e and y` = yj` in the case
(2.2);

– if x` is of type V, then y` =
⋃m
j=1 σ(yj`);

– if x` is of type E, then y` =
⋃m
j=1 σ(yj`).

The following theorem is implicit in the work of Borie et al. [12].

Theorem 1 (Borie et al. [12]). If P = (x1, . . . , xt) is a (counting) MSOL
predicate and C = (B,R) is a class of tree-decomposable graphs, then there exist:

– a finite set Q, and,
– for each composition operation ⊕ ∈ R an operation

⊕
on Q, of the same

arity as ⊕, and,
– a function h : BCP → Q such that
• h(G, y1, . . . , yt) = h(G′, y′1, . . . , y

′
t) implies PG(y1, . . . , yt) = PG′(y′1, . . . , y

′
t),

whenever both expressions PG(y1, . . . , yt) and PG′(y′1, . . . , y
′
t) are defined,

and,
• for every ⊕ ∈ R (of arity m) and every compatible ((Gi, yi1, . . . , yit))16i6m

h(⊕((G1, y11, . . . , y1t), . . . , (Gm, ym1, . . . , ymt)))

=
⊕

(h(G1, y11, . . . , y1t), . . . , h(Gm, ym1, . . . , ymt)) . (1)

The function h is called a homomorphism and the set Q a set of equivalence classes
2. A class q ∈ Q is accepting if h(G, y1, . . . , yt) = c implies that PG(y1, . . . , yt) is
true.

The proof of the theorem also provides an efficient way of constructing
the operations

⊕
. Thus, a corollary of the theorem is an alternative proof of

the famous result, mentioned in the introduction, that every graph problem
expressible in (counting) MSOL (also called recognition problem) can be solved
in polynomial (even linear) time for tree-decomposable graphs: given a graph
G ∈ C, construct a decomposition tree J of G and use (1) to evaluate the
function h in a bottom-up manner for all nodes of the decomposition tree J and
all relevant y-values; with some effort one needs at most O(1) time per node

2 For more details we refer to the papers [6, 12].



of the decomposition tree, for k = O(1). Borie et al. describe how to employ
Theorem 1 to obtain linear time algorithms also for optimization problems (i.e.,
min {|y| |PG(y)} or max {|y| |PG(y)}) and enumeration problems (i.e., computing
|{(y1, . . . , yt) |PG(y1, . . . , yt)}|).

Theorem 2 (Arnborg et al. [4], Borie et al. [12], Courcelle [15], Cour-
celle and Mosbah [16]). The recognition, optimization and enumeration prob-
lems can be solved in linear time on tree-decomposable graphs.

3 Fair Edge Deletion Problems on Graphs with Bounded
Tree-width

We describe how to exploit the MSOL framework to solve in polynomial time
fair edge deletion problems on tree-decomposable graphs. In the proof of the
main theorem of this section, we exploit and extend the homomorphism-based
method [12].

For a graph G = (V,E) and a subset y ⊆ E, we let ∆y be the maximum
degree in the graph (V, y).

Theorem 3. If P (x) is a (counting) MSOL predicate with a free variable of type
E, then the problem

min
y⊆E

{
∆y

∣∣P(V,E)(y)
}

is solvable in polynomial time on tree-decomposable graphs.

Proof. Let C be a fixed class of k-terminal tree-decomposable graphs. Let Q
be the finite set of equivalence classes and h : BCP → Q the homomorphism
given by Theorem 1. Let G = (V,E) ∈ C, let ∆ be the maximum degree of
G and H a decomposition tree of G. For a node v of H, let Gv = (Vv, Ev) be
the graph corresponding to this node (i.e., if v is a leaf and H is the label of v,
then Gv = H; if v is an inner node, ⊕ is the label of v and H1, . . . ,Hm are the
graphs corresponding to the children of v, then Gv = ⊕(H1, . . . ,Hm)) and let
Tv = {tv1, . . . , tvk′} be the set of at most k terminals of Gv and Av = Ev ∩

(
Tv

2

)
the set of edges between terminals of Gv. Our intention is to compute for every
node v of the decomposition tree H and every equivalence class q ∈ Q a matrix
Mv
q of dimension k′ + 1 and size 2|Av| · (∆ + 1)k

′
where the first dimension is

indexed by subsets of Av and all other dimensions by integers between 0 and ∆.
For A ⊆ Av and k′ integers i1, . . . , ik′ between 0 and ∆, we define

Mv
q (A, i1, . . . , ik′) :=

min
{
∆y

∣∣ y ⊆ Ev, y ∩Av = A, h(Gv, y) = q,degy(tvj ) ≤ ij , 1 ≤ j ≤ k′
}

(2)

where degy(u) is the degree of u in the graph (Vv, y). With such matrices at hand,
a solution for the problem readily follows: the optimal solution is

min
q∈Qa

min
A⊆Aroot

Mroot
q (A,∆, . . . ,∆)



where Qa ⊆ Q is a set of accepting classes. It remains to describe how to obtain
such matrices.

For leaves of the decomposition trees (i.e., for the base graphs in B) the
matrices can be computed by brute force. Let v be a fixed inner node of the
decomposition tree and ⊕ its label. Since the composition operation ⊕ provides
an exact description of the construction of Gv out of the graphs associated with
the children of v in H, the matrices associated with the children of v contain
sufficient information for calculation of the matrix Mv

q , for every equivalence class
q ∈ Q. It is easy to see that the time to compute a single value of the matrix is
bounded by a polynomial in |V | and, thus, also the time to compute the complete
matrix Mv

q is bounded by a polynomial. Since the number of equivalence classes
is constant and the size of the decomposition tree is linear in |V |, we conclude
that the total time to compute all the matrices for all nodes of the decomposition
tree is bounded by polynomial in |V |. ut

We note that, since the time for calculation of Mv
q grows with the degree of

the decomposition tree, it is desirable to have the degrees as small as possible.
We conclude this section by observing that a straightforward modification of

the procedure permits to obtain not only the value of the optimal solution but
also a corresponding set.

3.1 Examples

In this subsection we deal with two examples of fair edge deletion problems:
minimum degree spanning tree and (`, k)-coloring. An exact ad-hoc polynomial
algorithm for the minimum degree spanning tree was given by Marathe et al. [27];
for known results about the (`, k)-coloring we refer to the Introduction.

The predicates “connected” and “forest” are known to be MSOL predicates
(cf. [12]). Therefore also the predicate “spanning tree” is a MSOL predicate and
thus, by Theorem 3, the minimum degree spanning tree problem is solvable in
polynomial time on tree-decomposable graphs.

An (`, k)-coloring of a graph G = (V,E) is a partition of V into ` parts such
that each part induces a subgraph of G with maximum degree at most k. The
problem that we consider here is the following: For a graph G = (V,E) and a
fixed value ` the task is to find the minimum k such that G has an (`, k)-coloring.
Consider the following predicate:

P (F ′) = (∃V1, . . . , V`, F )F = E\F ′∧partition(V1, . . . , V`, V )∧
∧̀
i=1

(Vi×Vi∩F = ∅) ,

where the predicate “partition” is true if the sets Vi specify a partition of V ;
“partition” is known to belong to the MSOL. Then, P is an MSOL predicate,
and hence Theorem 3 ensures that the (`, k)-coloring problem is solvable in
polynomial time on tree-decomposable graphs, which is a new result.



4 Approximation of Minimum Fair OCT and Minimum
Fair s-t Cut on General Graphs

Given a graph G = (V,E), let C be the set of all odd cycles (viewed as edge
sets). The minimum fair OCT problem can be formulated using integer linear
programming as follows.

minimize k (3)

subject to ∀C ∈ C,
∑
e∈C

xe ≥ 1 ,

∀u ∈ V,
∑
e∈δ(v)

xe ≤ k ,

∀e ∈ E, xe ∈ {0, 1} .

In a linear programming relaxation, the last condition is replaced by xe ≥ 0.
We pause to note that the number of inequalities in the linear program (LP)

may be exponential in the size of G, nevertheless, the LP is solvable in polynomial
time using the ellipsoid method (given a vector x, one can check whether there
is a violated inequality [21]).

We also notice that the integrality gap of the relaxation by itself is very
large, namely n, as it can be seen by considering an odd cycle of length n: the
fractional optimum is 2/n (for each edge we set xe = 1/n) while the integral
optimum is 1. We now combine the relaxation with a few observations to obtain
an O(

√
n)-approximation.

Solve the LP for the graph G = (V,E), and set F = {e ∈ E |xe ≥ 1/(4
√
n)}

and F = E \F . Let H be the subset of edges of E that have both end degrees at
most

√
n+1 in (V, F ), that is,H =

{
{u, v} ∈ F

∣∣degF (u) ≤
√
n+ 1, degF (v) ≤

√
n+ 1

}
.

Lemma 1. The graph G′ = (V, F \H)) is bipartite.

Proof. Suppose on the contrary that G′ contains an odd cycle, and let C be a
shortest one. First, note that the length of C is at least 4

√
n + 1: since x is a

feasible solution of the LP for G′, every odd cycle of length at most 4
√
n in G′

contains an edge e with xe ≥ 1/(4
√
n).

Let D be the set of edges with exactly one endpoint in C; note that the
only edges with two endpoints in C are edges of the cycle. Since at least one of
every two successive nodes in C has at least

√
n+ 2 neighbors and since at least√

n of these neighbors are outside C, the set D contains
√
n · 4
√
n/2 = 2n or

more edges. On the other hand, since C is the shortest odd cycle, every vertex
outside C has at most two neighbors in C. Hence, |D| 6 2(n− 4

√
n+ 1) < 2n; a

contradiction. ut

Theorem 4. The above procedure computes an O(
√
n)-approximation of the

minimum fair odd cycle transversal.



Proof. Let k̂ be the integral optimum and k∗ the fractional optimum (so k∗ ≤ k̂).
We assume that the input graph G is not bipartite, that is, k̂ ≥ 1. Then, for every
vertex u ∈ V the set H contains at most

√
n+ 1 edges adjacent to u. Moreover,

for every vertex u ∈ V the rounding procedure guarantees that the number of
edges from F adjacent to u is at most 4

√
n
∑
e∈δ(u) xe ≤ 4

√
nk∗. ut

A simple example demonstrates that the given bound on the approximation
ratio of our algorithm is tight even for planar (and series-parallel) graphs. Think
about a graph obtained from a cycle of length 2

√
n+ 1 by replacing all edges but

one by
√
n/2 internally vertex disjoint paths of length two. The minimum value

of an OCT is one while the value of an OCT reported by the algorithm is
√
n.

We conclude this section with an observation that the integrality gap of the
LP is large even for planar (and series-parallel) graphs.

Theorem 5. The integrality gap of (3) for 2-connected planar (and series-
parallel) graphs is Ω(

√
n).

Proof. Let n be an integer such that
√
n is an integer. Consider

√
n vertices

v1, v2, . . . , v√n. For each i ∈ {1, 2, . . . ,
√
n− 1}, add

√
n parallel edges between vi

and vi+1, and subdivide each of these edges once. Thus, vi and vi+1 are linked by√
n internally disjoint paths P i1, . . . , P

i√
n

of length 2. Last, add an edge between
v√n and vi for every i ∈ {1, . . . , d

√
n/2e}. Let G = (V,E) be the obtained graph

(see Figure 4). Thus, G is a planar graph with n vertices and maximum degree
2
√
n+ 1. Further, every odd cycle of G contains the vertex v√n and has length

at least 2 · b
√
n/2c+ 1. Thus, setting xe = 1/

√
n for every edge e of G yields a

feasible fractional solution with objective value 2 + 1√
n

. However, the integral
optimum is d

√
n/2e. To see this, let F be an OCT of G. If all the edges {v√n, vi}

for i ∈ {1, . . . , d
√
n/2e} belong to F , then the degree of v√n in (V, F ) is at least

d
√
n/2e, as wanted. So, assume that there exists i ∈ {1, . . . , d

√
n/2e} such that

{v√n, vi} /∈ F . Then, observe that there must exist j ∈ {i, . . . ,
√
n} such that F

contains at least one edge of each of the paths P js . (For otherwise there would
exist an odd cycle vi, yi, vi+1, yi+1, . . . , v√n−1, y

√
n−1, v

√
n in (V,E \F ), where yt

belongs to P ts for some integer s.) Consequently, one of vj and vj+1 has degree
at least d

√
n/2e in the graph (V, F ). This concludes the proof. ut

Minimum Fair Cut Problem. The same approach yields aΘ(
√
n)-approximation

algorithm for the minimum fair cut problem; the difference is that in the linear
program (3) we replace the set C of all odd cycles by the set of all paths between
x and y. We omit further details.

5 Conclusion and Open Problems

The approach presented in this paper can be extended to other fair objective
functions; an example are fair node deletion problems where the goal is to
delete a proper subset of nodes such that the resulting graph satisfies the given
property and the objective is roughly to minimize the maximum number of



· · · · · ·

· · ·

v1 v2
v!
√

n
2 " v√n−1

v√n

...
...

Fig. 1. The graph G in the proof of Theorem 5.

deleted neighbors. As we alluded to, the approach also works for maximizing the
minimum degree. The question is for which other objective functions this or a
similar approach works?

An important open question deals with the complexity of the fair prob-
lems. The running time of the exact algorithms for tree-decomposable graphs is
polynomial. Is it possible to have a linear-time algorithm?
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