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Abstract

The Erd6s—Simonovits stability theorem states that for all € > 0 there exists o > 0
such that if G is a K, 1-free graph on n vertices with e(G) > ex(n, K, 1) — an?, then
one can remove en? edges from G to obtain an r-partite graph. Fiiredi gave a short
proof that one can choose o = €. We give a bound for the relationship of o and e
which is asymptotically sharp as € — 0.

1 Introduction

Erdos asked how many edges need to be removed in a triangle-free graph on n vertices
in order to make it bipartite. He conjectured that the balanced blow-up of C5 with
class sizes n/5 is the worst case, and hence 1/25n2 edges would always be sufficient.
Together with Faudree, Pach and Spencer [5], he proved that one can remove at most
1/18n? edges to make a triangle-free graph bipartite.

Further, Erdés, Gy6ri and Simonovits [6] proved that for graphs with at least n?/5
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edges, an unbalanced C5 blow-up is the worst case. For r € N, denote D,(G) the
minimum number of edges which need to be removed to make G r-partite.

Theorem 1.1 (Erd8s, Gyéri and Simonovits [6]). Let G be a Ks-free graph on n
vertices with at least n?/5 edges. There exists an unbalanced Cs blow-up of H with

e(H) > e(G) such that
Dy (G) < Da(H).

This proved the Erdds conjecture for graphs with at least n?/5 edges. A simple
probabilistic argument (e.g. [6]) settles the conjecture for graphs with at most 2/25n2
edges.

A related question was studied by Sudakov; he determined the maximum number of
edges in a Ky-free graph which need to be removed in order to make it bipartite
[13]. This problem for Kg-free graphs was solved by Hu, Lidicky, Martins, Norin and
Volec [10].

We will study the question of how many edges in a K, 1-free graph need at most to
be removed to make it r-partite. For n € N and a graph H, ex(n, H) denote the Turdn
number, i.e. the maximum number of edges of an H-free graph. The Erdés—Simonovits
theorem [7] for cliques states that for every € > 0 there exists > 0 such that if G is
a K, 1-free graph on n vertices with e(G) > ex(n, K,11) — an?, then D,.(G) < en?.

Firedi [8] gave a nice short proof of the statement that a K, ;-free graph G on
n vertices with at least ex(n, K,+1) — t edges satisfies D, (G) < t; thus providing a
quantitative version of the Erd8s-Simonovits theorem. In [10] Fiiredi’s result was
strengthened for some values of r. For small ¢, we will determine asymptotically how
many edges are needed. For very small ¢, it is already known [3] that G has to be
r-partite.

Theorem 1.2 (Brouwer [3]). Let r > 2 and n > 2r + 1 be integers. Let G be a
K,y1-free graph on n vertices with e(G) > ex(n, K,41) — | %] + 2. Then

D.(G) = 0.

This result was rediscovered in [1,9,/11,/15]. We will study K, 1-free graphs on fewer
edges.

Theorem 1.3. Let r > 2 be an integer. Then for all n > 3r2 and for all 0 < a <
10~7r=12 the following holds. Let G be a K, 1-free graph on n vertices with

e(G) > ex(n, Kyy1) — t,

where t = an?, then

2r
3V3

D,(G) < ( + 307"3041/6) a®/2n?.



Note that we did not try to optimize our bounds on n and « in the theorem. One
could hope for a slightly better error term of 30r3a®/3 in Theorem but the next
natural step would be to prove a structural version.

To state this structural version we introduce some definitions. The blow-up of a graph
G is obtained by replacing every vertex v € V(G) with finitely many copies so that the
copies of two vertices are adjacent if and only if the originals are.

For two graphs G and H, we define G® H to be the graph on the vertex set V(G)UV (H)
with g¢' € E(G®H) iff g¢' € E(G), hh' € E(GeH) iff hh' € E(H) and gh € E(G®H)
forall g € V(G), he V(H).

Conjecture 1.4. Let r > 2 be an integer and n sufficiently large. Then there exists
ag > 0 such that for all 0 < o < «aq the following holds. For every K,i1-free graph
G on n wvertices there exists an unbalanced K,_o ® C5 blow-up H on n vertices with
e(H) > e(G) such that

D.(G) < D,(H).

This conjecture can be seen as a generalization of Theorem [I.I] We will prove that
Theorem [I.3]is asymptotically sharp by describing an unbalanced blow-up of K, _2®Csj
that needs at least that many edges to be removed to make it r-partite. This gives us
a strong evidence that Conjecture is true.

Theorem 1.5. Let r,n € N and 0 < a < ﬁ. Then there exists a K,41-free graph on
n vertices with
4 2r(r —3)
e(G) > ex(n, K, —an®+ ——a’?p? - T 22
(@) = ex(n, Koia) e -
and 5
r
D, (G) > ——a%/?p2.
r( ) =3 \/g
In Kang-Pikhurko’s proof [11] of Theorem [1.2]the case e(G) = ex(n, Ky11)—|n/r|+1
is studied. In this case they constructed a family of K, i-free non-r-partite graphs,
which includes our extremal graph, for that number of edges.
We recommend the interested reader to read the excellent survey [12] by Nikiforov. He
gives a good overview on further related stability results, for example on guaranteeing
large induced r-partite subgraphs of K, i-free graphs.
We organize the paper as follows. In Section [2] we prove Theorem [I.3]and in Section
we give the sharpness example, i.e. we prove Theorem

2 Proof of Theorem 1.3

Let G be an n-vertex K, y1-free graph with e(G) > ex(n, K,41) —t, where t = an?. We
will assume that n is sufficiently large. Furthermore, by Theorem we can assume



that

P2 1

aZL 3

n = 2rn’

This also implies that ¢ > 7 because n > 3r2. During our proof we will make use of
Turan’s theorem and a version of Turan’s theorem for r-partite graphs multiple time.
Turén’s theorem [14] determines the maximum number of edges in a K, -free graph.

Theorem 2.1 (Turdn [14]). Let r > 2 and n € N. Then,

2 r r
Denote K(nq,...,n,) the complete r-partite graph whose 7 color classes have sizes
ni,..., Ny, respectively. Turans theorem for r-partite graphs states the following.

Theorem 2.2 (folklore). Let r > 2 and ny,...,n, € N satisfying ny < ... <mn,. For
a K,-free subgraph H of K(ni,...,n,), we have

e(H) <e(K(ni,....,n.)) — nina.

For a proof of this folklore result see for example |2, Lemma 3.3].

We denote the maximum degree of G by A(G). For two disjoint subsets U, W of
V(Q), write e(U, W) for the number of edges in G with one endpoint in U and the
other endpoint in W. We write e“(U, W) for the number of non-edges between U and
W, ie. e<(UW) =|U||W|—e(UW).

Fiiredi [8] used Erdds’ degree majorization algorithm [4] to find a vertex partition with
some useful properties. We include a proof for completeness.

Lemma 2.3 (Firedi [8]). Let t,r,n € N and G be an n-vertex K,ii-free graph with
e(G) > ex(n, Ky41) —t. Then there exists a vertex partition V(G) =V U...UV, such
that

Se@Vh<t, AG) =3[Vl ad Y eW,v)<o (1)
=2

i=1 1<i<j<r

Proof. Let z1 € V(G) be a vertex of maximum degree. Define V; := V(G) \ N(z1)
and V;© = N(z1). Iteratively, let z; be a vertex of maximum degree in G[V;",]. Let
Vi = V:l \ N(z;) and Vi+ = V:l N N(z;). Since G is K, 1-free this process stops at
i <r and thus gives a vertex partition V(G) =V, U...UV,.

In the proof of [8, Theorem 2], it is shown that the partition obtained from this algo-
rithm satisfies



By construction,
T

YWVl = Vil = IN(z1)] = A(G).

i=2
Let H be the complete r-partite graph with vertex set V(G) and all edges between V;
and Vj for 1 <i < j <r. The graph H is r-partite and thus has at most ex(n, K,11)
edges. Finally, since G has at most ¢ edges not in H and at least ex(n, K,41) —t edges
total, at most 2t edges of H can be missing from G, giving us

> Vi, V) <2t

1<i<j<r
and proving the last inequality. O
For this vertex partition we can get bounds on the class sizes.

Lemma 2.4. For alli € [r], |V;] € {Z — 3\/an, 2 + 5\/an} and thus also

r

r—1 )
A < -
(G) < " n+gvan
Proof. We know that
4 1\ n? r
> VIV e(@) = Y@ = (1- ) 5 - -2t
1<i<j<r i=1 r
Also,
1 « n? 1,0
> illVil =52 Wiln = Vi) = 5 = 5 X _IVil*.
1<i<j<r i=1 i=1
Thus, we can conclude that
r ng
Z|Vg|2§7—|—r+4t. (2)

i=1

Now, let = |V1| — n/r. Then,

r 2 r 9 r ‘/; 9
> il <Z+x) +Z|W2Z<Z+x) 4 iz ViD)”
i=1 i=2

r—1

+ 22

v

ERNUEE

T r—1 —r

Combining this with , we get |z] < /r+4t < %\/i = g\/an, and thus

5 5
T 2Van< il <2+ 2 an,
r 2 r 2

In a similar way we get the bounds on the sizes of the other classes. O



Lemma 2.5. The graph G contains r vertices 1 € V1,...,x, € V. which form a K,
and for every i
deg(z;) > n — |Vi| — bran.

Proof. Let V¢ := V(G)\V;. We call a vertex v; € V; small if | N (v;)NVE| < |V€|—bran
and big otherwise. For 1 < i < r, denote B; the set of big vertices inside class V;. There

are at most
4t 4

Sran 5771
small vertices in total as otherwise is violated. Thus, in each class there are at least
n/10r big vertices, i.e. |B;| > n/10r. The number of missing edges between the sets
Bi,..., B, is at most 2t < ﬁn? Thus, using Theorem we can find a K, with
one vertex from each B;. ]

Lemma 2.6. There exists a vertex partition V(G) = X3 U...U X, UX such that all
X;s are independent sets, | X| < 5r2an and

P 3van <|X;| <+ 3rvan
T T

forall1<i<r.

Proof. By Lemmawe can find vertices z1, . .., z, forming a K, and having deg(z;) >
n—|Vi| —5ran. Define X; to be the common neighborhood of 1, ..., z;—1 ,%it1,. .., 2Ty
and X =V(G)\ (X1 U---UX,). Since G is K,;-free, the X;s are independent sets.
Now we bound the size of X; using the bounds on the Vjs. Since every z; has at most
|V;| 4+ bran non-neighbors, we get

1Xi| =n— Y (|Vj|+5ran) > |Vi| — 5r*an > % _3van.
r

1<5<r
J#i
and
.
Zdeg(w) > n(r —1) — 5r2an. (3)
i=1
A vertex v € V(@) cannot be incident to all of the vertices 1, ..., x,, because G is

K, 1-free. Further, every vertex from X is not incident to at least two of the vertices
T1,...,Zp. Thus,

> deg(a) < nlr — 1)~ [X]. (4)
=1

Combining with , we conclude that

|X| < 5r%an.



For the upper bound on the sizes of the sets X; we get

—1
| X <n— g ]Xj|§n—Ln+3rﬁn:ﬁ+3rﬁn.
T T

1<j<r
J#
We now bound the number of non-edges between X1,..., X,.
Lemma 2.7.
1
S (X X) <t e(X, XO) + [X]2 - (1 - ) n|X| +r.
e r
1<i<y<r
Proof.
n? 1 r c
—(l-=)—z-t<e(@) =e(X,X)+e(X)+ > e(XiX))
2 r 2 W
<i<j<r
X|? 1 —|X])?
<e(X, X+ X + (1 - ) <M> - Y (X, Xy).
2 r 2 —
1<i<y<r
This gives the statement of the lemma. O
Let

A _

n+3a1/3n} and X :=X\X.

X = {v eX ‘ degx,u..ux, (v) = r
.

Let d € [0,1] such that |X| = d|X|. Further, let k& € [0, 5] such that |X| = kan.
Now we shall give an upper bound the number of non-edges between Xy, ..., X,.

Lemma 2.8.

1
ST (X, X;) < 20r%atAn? + (1 —(1- d)k) an?.

1<i<j<r "



Proof. By Lemma

1
Y (X, X)) St+e(X, X+ X - (1 — ) n|X|+r
r

1<i<j<r

-2 1
<t +d|X|AG) + (1 — d)|X] (Zn + 3a1/3n) FIX? - (1 - r) n|X|+r

—1 -2

<t+dX]| (nr + ;\/an) + (1 —d)|X]| (T n +3a1/3n)
T T
1

+]X)? - <1 - ) n|X| +r
T

5 d—1
< SdIX|van +3(1 - d)|X|a3n + | X+t + n|X|=—— +r

5 1
< 5koﬁ/QnQ + 3ka*?n? +|X)? + <1 —(1— d)rk> an® 4+ r

25 1
< 57'2043/279 +15r%a*3n? 4 25r*a®n? + <1 —(1— d)k) an® 4 r
r

1
< 20r20*/%n? + (1 —(1- d)k) an?.
T

Let

Cla) == 2020 + (1 —(1- d)1k> a.

r

For every vertex u € X there is no K, in Nx, (u)U---U Nx, (u). Thus, by applying
Theorem [2.2] and Lemma 2.8} we get

min [Ny, (][N, (0] € 36X, X;) < Clan® )

1<i<j<r

Bound implies in particular that every vertex u € X has degree at most \/C(a)n
to one of the sets Xy,..., X, i.e.

miin INx,(u)| <+/Cla)n. (6)

Therefore, we can partition X = A; U...U A, such that every vertex u € A; has at
most y/C(a)n neighbors in Xj.

By the following calculation, for every vertex u € X the second smallest neighborhood
to the X;’s has size at least al/3n.

r—2

n;éin |Nx, (u)| + |Nx, (u)] > n+ 3a?n — (r —2) (n + 37\/&71) > 203,
17 T

r



where we used the definition of X and Lemma Combining the lower bound on the
second smallest neighborhood with we can conclude that for every u € X

win [N ()] < S g

Hence, we can partition X = By U...U B, such that every vertex u € B; has at most
C’(a)ofl/“q’n neighbors in X;. Consider the partition A;UB1UX1,A5UBoUXo, ..., AU
B, U X,. By removing all edges inside the classes we end up with an r-partite graph.
We have to remove at most

eX)+dx1 %Y 4 (1~ )IX1y/Cla)n < 6r°a°n® + (1 — d)ky/C(a)an’

a3

< 6r2a®Pn? + (1 — d)k (\/ 20r2a4/3 + \/(1 —(1- d)lk) a) an?

r
2r

<|—%=+ 30T3a1/6> a3/2n?

- <3\/§

edges. We have used @, and the fact that

(- 1-(-a < 2o

which can be seen by setting z = (1—d)k and finding the maximum of f(z) := z,/1 — £
which is obtained at z = 2r/3.

3 Sharpness Example

In this section we will prove Theorem i.e. that the leading term from Theorem
is best possible.

Proof of Theorem[1.5. Let G be the graph with vertex set V(G) = AUX UBUCU
DUX;---UX,_9, where all classes A, X, B,C, D, X1,...,X,_o form independent sets;
A, X, B,C, D form a complete blow-up of a C5, where the classes are named in cyclic
order; and for each 1 <7 < r — 2, every vertex from X; is incident to all vertices from
V(G)\ X;.

The sizes of the classes are

2 1727" 1727"
X = Fan, |4 =|B|=,/Sn, [C]=|D|= —2"n—/Tn |Xi|= —3n.
T

r

The smallest class is X and the second smallest are A and B. By deleting all edges
between X and A (| X||A| = 2’" a’/?n?) we get an r-partite graph. Since the classes A



Figure 1: Graph G

and X are the two smallest class sizes, one cannot do better as observed in [6, Theorem
7]. Hence

D) > 27322,

Let us now count the number of edges of G. The number of edges incident to X is

e(X, X = (2;04> (2 (;) n? + (?a) ( _7,237“&(7' — 2)) n?

(2 —ats gz A =2) z) 2
—(3(r 2)a+3\/§a g @ )n

Using that |A| + |C] = |B| + |D| = |X1|, we have that the number of edges inside
AUBUCUDUX U ---UX,_9is

2
1-Z 1
e<X6>=|X1|2<§>—A||B|=< 3an> <§>—3“”2
T
:i " angioz " n2+%o¢2 " n271an2
r2\2 3r2 \2 9 2 3

1\ n? 2 1 4
:(1—r>n2—3(r—1)an2—3an2+9a2<;>n2.

10



Thus, the number of edges of G is

1\ n? 4r 2r(r —3)
— c c 1— 2 )= — 2, 3/2,2 <2\ 7)) 2 2
e(G) = e(X) +e(X, X )—( 7") 2 an +3\/§a n 9 a’n

4 —
r 3202 — 2r(r 3)a2n2,
3v3 9

> ex(n, Ky11) — an® +

where we applied Turan’s theorem in the last step. ]
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