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Abstract

The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0
such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n,Kr+1)− αn2, then
one can remove εn2 edges from G to obtain an r-partite graph. Füredi gave a short
proof that one can choose α = ε. We give a bound for the relationship of α and ε
which is asymptotically sharp as ε→ 0.

1 Introduction
Erdős asked how many edges need to be removed in a triangle-free graph on n vertices
in order to make it bipartite. He conjectured that the balanced blow-up of C5 with
class sizes n/5 is the worst case, and hence 1/25n2 edges would always be sufficient.
Together with Faudree, Pach and Spencer [5], he proved that one can remove at most
1/18n2 edges to make a triangle-free graph bipartite.
Further, Erdős, Győri and Simonovits [6] proved that for graphs with at least n2/5
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edges, an unbalanced C5 blow-up is the worst case. For r ∈ N, denote Dr(G) the
minimum number of edges which need to be removed to make G r-partite.

Theorem 1.1 (Erdős, Győri and Simonovits [6]). Let G be a K3-free graph on n
vertices with at least n2/5 edges. There exists an unbalanced C5 blow-up of H with
e(H) ≥ e(G) such that

D2(G) ≤ D2(H).

This proved the Erdős conjecture for graphs with at least n2/5 edges. A simple
probabilistic argument (e.g. [6]) settles the conjecture for graphs with at most 2/25n2

edges.
A related question was studied by Sudakov; he determined the maximum number of
edges in a K4-free graph which need to be removed in order to make it bipartite
[13]. This problem for K6-free graphs was solved by Hu, Lidický, Martins, Norin and
Volec [10].
We will study the question of how many edges in a Kr+1-free graph need at most to
be removed to make it r-partite. For n ∈ N and a graph H, ex(n,H) denote the Turán
number, i.e. the maximum number of edges of an H-free graph. The Erdős–Simonovits
theorem [7] for cliques states that for every ε > 0 there exists α > 0 such that if G is
a Kr+1-free graph on n vertices with e(G) > ex(n,Kr+1)− αn2, then Dr(G) ≤ εn2.

Füredi [8] gave a nice short proof of the statement that a Kr+1-free graph G on
n vertices with at least ex(n,Kr+1) − t edges satisfies Dr(G) ≤ t; thus providing a
quantitative version of the Erdős–Simonovits theorem. In [10] Füredi’s result was
strengthened for some values of r. For small t, we will determine asymptotically how
many edges are needed. For very small t, it is already known [3] that G has to be
r-partite.

Theorem 1.2 (Brouwer [3]). Let r ≥ 2 and n ≥ 2r + 1 be integers. Let G be a
Kr+1-free graph on n vertices with e(G) ≥ ex(n,Kr+1)−

⌊
n
r

⌋
+ 2. Then

Dr(G) = 0.

This result was rediscovered in [1,9,11,15]. We will study Kr+1-free graphs on fewer
edges.

Theorem 1.3. Let r ≥ 2 be an integer. Then for all n ≥ 3r2 and for all 0 ≤ α ≤
10−7r−12 the following holds. Let G be a Kr+1-free graph on n vertices with

e(G) ≥ ex(n,Kr+1)− t,

where t = αn2, then

Dr(G) ≤
( 2r

3
√

3
+ 30r3α1/6

)
α3/2n2.
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Note that we did not try to optimize our bounds on n and α in the theorem. One
could hope for a slightly better error term of 30r3α5/3 in Theorem 1.3, but the next
natural step would be to prove a structural version.
To state this structural version we introduce some definitions. The blow-up of a graph
G is obtained by replacing every vertex v ∈ V (G) with finitely many copies so that the
copies of two vertices are adjacent if and only if the originals are.
For two graphs G and H, we define G⊗H to be the graph on the vertex set V (G)∪V (H)
with gg′ ∈ E(G⊗H) iff gg′ ∈ E(G), hh′ ∈ E(G⊗H) iff hh′ ∈ E(H) and gh ∈ E(G⊗H)
for all g ∈ V (G), h ∈ V (H).

Conjecture 1.4. Let r ≥ 2 be an integer and n sufficiently large. Then there exists
α0 > 0 such that for all 0 ≤ α ≤ α0 the following holds. For every Kr+1-free graph
G on n vertices there exists an unbalanced Kr−2 ⊗ C5 blow-up H on n vertices with
e(H) ≥ e(G) such that

Dr(G) ≤ Dr(H).

This conjecture can be seen as a generalization of Theorem 1.1. We will prove that
Theorem 1.3 is asymptotically sharp by describing an unbalanced blow-up of Kr−2⊗C5
that needs at least that many edges to be removed to make it r-partite. This gives us
a strong evidence that Conjecture 1.4 is true.

Theorem 1.5. Let r, n ∈ N and 0 < α < 1
4r4 . Then there exists a Kr+1-free graph on

n vertices with

e(G) ≥ ex(n,Kr+1)− αn2 + 4r
3
√

3
α3/2n2 − 2r(r − 3)

9 α2n2

and
Dr(G) ≥ 2r

3
√

3
α3/2n2.

In Kang-Pikhurko’s proof [11] of Theorem 1.2 the case e(G) = ex(n,Kr+1)−bn/rc+1
is studied. In this case they constructed a family of Kr+1-free non-r-partite graphs,
which includes our extremal graph, for that number of edges.
We recommend the interested reader to read the excellent survey [12] by Nikiforov. He
gives a good overview on further related stability results, for example on guaranteeing
large induced r-partite subgraphs of Kr+1-free graphs.
We organize the paper as follows. In Section 2 we prove Theorem 1.3 and in Section 3
we give the sharpness example, i.e. we prove Theorem 1.5.

2 Proof of Theorem 1.3
Let G be an n-vertex Kr+1-free graph with e(G) ≥ ex(n,Kr+1)− t, where t = αn2. We
will assume that n is sufficiently large. Furthermore, by Theorem 1.2 we can assume
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that

α ≥
⌊

n
r

⌋
− 2

n2 ≥ 1
2rn.

This also implies that t ≥ r because n ≥ 3r2. During our proof we will make use of
Turán’s theorem and a version of Turán’s theorem for r-partite graphs multiple time.
Turán’s theorem [14] determines the maximum number of edges in a Kr+1-free graph.

Theorem 2.1 (Turán [14]). Let r ≥ 2 and n ∈ N. Then,

n2

2

(
1− 1

r

)
− r

2 ≤ ex(n,Kr+1) ≤ n2

2

(
1− 1

r

)
.

Denote K(n1, . . . , nr) the complete r-partite graph whose r color classes have sizes
n1, . . . , nr, respectively. Turanś theorem for r-partite graphs states the following.

Theorem 2.2 (folklore). Let r ≥ 2 and n1, . . . , nr ∈ N satisfying n1 ≤ . . . ≤ nr. For
a Kr-free subgraph H of K(n1, . . . , nr), we have

e(H) ≤ e(K(n1, ..., nr))− n1n2.

For a proof of this folklore result see for example [2, Lemma 3.3].
We denote the maximum degree of G by ∆(G). For two disjoint subsets U,W of

V (G), write e(U,W ) for the number of edges in G with one endpoint in U and the
other endpoint in W . We write ec(U,W ) for the number of non-edges between U and
W , i.e. ec(U,W ) = |U ||W | − e(U,W ).
Füredi [8] used Erdős’ degree majorization algorithm [4] to find a vertex partition with
some useful properties. We include a proof for completeness.

Lemma 2.3 (Füredi [8]). Let t, r, n ∈ N and G be an n-vertex Kr+1-free graph with
e(G) ≥ ex(n,Kr+1)− t. Then there exists a vertex partition V (G) = V1 ∪ . . .∪ Vr such
that

r∑
i=1

e(G[Vi]) ≤ t, ∆(G) =
r∑

i=2
|Vi| and

∑
1≤i<j≤r

ec(Vi, Vj) ≤ 2t. (1)

Proof. Let x1 ∈ V (G) be a vertex of maximum degree. Define V1 := V (G) \ N(x1)
and V +

1 = N(x1). Iteratively, let xi be a vertex of maximum degree in G[V +
i−1]. Let

Vi := V +
i−1 \N(xi) and V +

i = V +
i−1 ∩N(xi). Since G is Kr+1-free this process stops at

i ≤ r and thus gives a vertex partition V (G) = V1 ∪ . . . ∪ Vr.
In the proof of [8, Theorem 2], it is shown that the partition obtained from this algo-
rithm satisfies

r∑
i=1

e(G[Vi]) ≤ t.
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By construction,
r∑

i=2
|Vi| = |V +

1 | = |N(x1)| = ∆(G).

Let H be the complete r-partite graph with vertex set V (G) and all edges between Vi

and Vj for 1 ≤ i < j ≤ r. The graph H is r-partite and thus has at most ex(n,Kr+1)
edges. Finally, since G has at most t edges not in H and at least ex(n,Kr+1)− t edges
total, at most 2t edges of H can be missing from G, giving us∑

1≤i<j≤r

ec(Vi, Vj) ≤ 2t

and proving the last inequality.

For this vertex partition we can get bounds on the class sizes.

Lemma 2.4. For all i ∈ [r], |Vi| ∈ {n
r −

5
2
√
αn, n

r + 5
2
√
αn} and thus also

∆(G) ≤ r − 1
r

n+ 5
2
√
αn.

Proof. We know that

∑
1≤i<j≤r

|Vi||Vj | ≥ e(G)−
r∑

i=1
e(G[Vi]) ≥

(
1− 1

r

)
n2

2 −
r

2 − 2t.

Also, ∑
1≤i<j≤r

|Vi||Vj | =
1
2

r∑
i=1
|Vi|(n− |Vi|) = n2

2 −
1
2

r∑
i=1
|Vi|2.

Thus, we can conclude that
r∑

i=1
|Vi|2 ≤

n2

r
+ r + 4t. (2)

Now, let x = |V1| − n/r. Then,
r∑

i=1
|Vi|2 =

(
n

r
+ x

)2
+

r∑
i=2
|Vi|2 ≥

(
n

r
+ x

)2
+ (

∑r
i=2 |Vi|)2

r − 1

≥
(
n

r
+ x

)2
+

(
n
(
1− 1

r

)
− x

)2

r − 1 ≥ n2

r
+ x2.

Combining this with (2), we get |x| ≤
√
r + 4t ≤ 5

2
√
t = 5

2
√
αn, and thus

n

r
− 5

2
√
αn ≤ |V1| ≤

n

r
+ 5

2
√
αn.

In a similar way we get the bounds on the sizes of the other classes.
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Lemma 2.5. The graph G contains r vertices x1 ∈ V1, . . . , xr ∈ Vr which form a Kr

and for every i
deg(xi) ≥ n− |Vi| − 5rαn.

Proof. Let V c
i := V (G)\Vi. We call a vertex vi ∈ Vi small if |N(vi)∩V c

i | < |V c
i |−5rαn

and big otherwise. For 1 ≤ i ≤ r, denote Bi the set of big vertices inside class Vi. There
are at most

4t
5rαn = 4

5rn

small vertices in total as otherwise (1) is violated. Thus, in each class there are at least
n/10r big vertices, i.e. |Bi| ≥ n/10r. The number of missing edges between the sets
B1, . . . , Br is at most 2t < 1

100r2n
2. Thus, using Theorem 2.2 we can find a Kr with

one vertex from each Bi.

Lemma 2.6. There exists a vertex partition V (G) = X1 ∪ . . . ∪Xr ∪X such that all
Xis are independent sets, |X| ≤ 5r2αn and

n

r
− 3
√
αn ≤ |Xi| ≤

n

r
+ 3r
√
αn

for all 1 ≤ i ≤ r.

Proof. By Lemma 2.5 we can find vertices x1, . . . , xr forming aKr and having deg(xi) ≥
n−|Vi|−5rαn. Define Xi to be the common neighborhood of x1, . . . , xi−1 , xi+1, . . . , xr

and X = V (G) \ (X1 ∪ · · · ∪Xr). Since G is Kr+1-free, the Xis are independent sets.
Now we bound the size of Xi using the bounds on the Vis. Since every xj has at most
|Vj |+ 5rαn non-neighbors, we get

|Xi| ≥ n−
∑

1≤j≤r
j 6=i

(|Vj |+ 5rαn) ≥ |Vi| − 5r2αn ≥ n

r
− 3
√
αn.

and
r∑

i=1
deg(xi) ≥ n(r − 1)− 5r2αn. (3)

A vertex v ∈ V (G) cannot be incident to all of the vertices x1, . . . , xr, because G is
Kr+1-free. Further, every vertex from X is not incident to at least two of the vertices
x1, . . . , xr. Thus,

r∑
i=1

deg(xi) ≤ n(r − 1)− |X|. (4)

Combining (3) with (4), we conclude that

|X| ≤ 5r2αn.
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For the upper bound on the sizes of the sets Xi we get

|Xi| ≤ n−
∑

1≤j≤r
j 6=i

|Xj | ≤ n−
r − 1
r

n+ 3r
√
αn = n

r
+ 3r
√
αn.

We now bound the number of non-edges between X1, . . . , Xr.

Lemma 2.7. ∑
1≤i<j≤r

ec(Xi, Xj) ≤ t+ e(X,Xc) + |X|2 −
(

1− 1
r

)
n|X|+ r.

Proof.

n2

2

(
1− 1

r

)
− r

2 − t ≤ e(G) = e(X,Xc) + e(X) +
∑

1≤i<j≤r

e(Xi, Xj)

≤ e(X,Xc) + |X|
2

2 +
(

1− 1
r

)((n− |X|)2

2

)
−

∑
1≤i<j≤r

ec(Xi, Xj).

This gives the statement of the lemma.

Let

X̄ =
{
v ∈ X

∣∣∣∣ degX1∪···∪Xr
(v) ≥ r − 2

r
n+ 3α1/3n

}
and X̂ := X \ X̄.

Let d ∈ [0, 1] such that |X̄| = d|X|. Further, let k ∈ [0, 5r2] such that |X| = kαn.
Now we shall give an upper bound the number of non-edges between X1, . . . , Xr.

Lemma 2.8. ∑
1≤i<j≤r

ec(Xi, Xj) ≤ 20r2α4/3n2 +
(

1− (1− d)1
r
k

)
αn2.
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Proof. By Lemma 2.7,∑
1≤i<j≤r

ec(Xi, Xj) ≤ t+ e(X,Xc) + |X|2 −
(

1− 1
r

)
n|X|+ r

≤ t+ d|X|∆(G) + (1− d)|X|
(
r − 2
r

n+ 3α1/3n

)
+ |X|2 −

(
1− 1

r

)
n|X|+ r

≤ t+ d|X|
(
n
r − 1
r

+ 5
2
√
αn

)
+ (1− d)|X|

(
r − 2
r

n+ 3α1/3n

)
+ |X|2 −

(
1− 1

r

)
n|X|+ r

≤ 5
2d|X|

√
αn+ 3(1− d)|X|α1/3n+ |X|2 + t+ n|X|d− 1

r
+ r

≤ 5
2kα

3/2n2 + 3kα4/3n2 + |X|2 +
(

1− (1− d)1
r
k

)
αn2 + r

≤ 25
2 r

2α3/2n2 + 15r2α4/3n2 + 25r4α2n2 +
(

1− (1− d)1
r
k

)
αn2 + r

≤ 20r2α4/3n2 +
(

1− (1− d)1
r
k

)
αn2.

Let

C(α) := 20r2α4/3 +
(

1− (1− d)1
r
k

)
α.

For every vertex u ∈ X there is no Kr in NX1(u) ∪ · · · ∪ NXr (u). Thus, by applying
Theorem 2.2 and Lemma 2.8, we get

min
i 6=j
|NXi(u)||NXj (u)| ≤

∑
1≤i<j≤r

ec(Xi, Xj) ≤ C(α)n2. (5)

Bound (5) implies in particular that every vertex u ∈ X has degree at most
√
C(α)n

to one of the sets X1, . . . , Xr, i.e.

min
i
|NXi(u)| ≤

√
C(α)n. (6)

Therefore, we can partition X̂ = A1 ∪ . . . ∪ Ar such that every vertex u ∈ Ai has at
most

√
C(α)n neighbors in Xi.

By the following calculation, for every vertex u ∈ X̄ the second smallest neighborhood
to the Xi’s has size at least α1/3n.

min
i 6=j
|NXi(u)|+ |NXj (u)| ≥ r − 2

r
n+ 3α1/3n− (r − 2)

(
n

r
+ 3r
√
αn

)
≥ 2α1/3n,
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where we used the definition of X̄ and Lemma 2.6. Combining the lower bound on the
second smallest neighborhood with (5) we can conclude that for every u ∈ X̄

min
i
|NXi(u)| ≤ C(α)

α1/3 n. (7)

Hence, we can partition X̄ = B1 ∪ . . . ∪Br such that every vertex u ∈ Bi has at most
C(α)α−1/3n neighbors in Xi. Consider the partition A1∪B1∪X1,A2∪B2∪X2, . . . , Ar∪
Br ∪Xr. By removing all edges inside the classes we end up with an r-partite graph.
We have to remove at most

e(X) + d|X|C(α)
α1/3 n+ (1− d)|X|

√
C(α)n ≤ 6r2α5/3n2 + (1− d)k

√
C(α)αn2

≤ 6r2α5/3n2 + (1− d)k
(√

20r2α4/3 +
√(

1− (1− d)1
r
k

)
α

)
αn2

≤
( 2r

3
√

3
+ 30r3α1/6

)
α3/2n2

edges. We have used (6), (7) and the fact that

(1− d)k

√
1− (1− d)k

r
≤ 2r

3
√

3
,

which can be seen by setting z = (1−d)k and finding the maximum of f(z) := z
√

1− z
r

which is obtained at z = 2r/3.

3 Sharpness Example
In this section we will prove Theorem 1.5, i.e. that the leading term from Theorem 1.3
is best possible.

Proof of Theorem 1.5. Let G be the graph with vertex set V (G) = A ∪X ∪ B ∪ C ∪
D∪X1 · · ·∪Xr−2, where all classes A,X,B,C,D,X1, . . . , Xr−2 form independent sets;
A,X,B,C,D form a complete blow-up of a C5, where the classes are named in cyclic
order; and for each 1 ≤ i ≤ r − 2, every vertex from Xi is incident to all vertices from
V (G) \Xi.

The sizes of the classes are

|X| = 2r
3 αn, |A| = |B| =

√
α

3 n, |C| = |D| =
1− 2r

3 α

r
n−
√
α

3 n, |Xi| =
1− 2r

3 α

r
n.

The smallest class is X and the second smallest are A and B. By deleting all edges
between X and A (|X||A| = 2r

3
√

3α
3/2n2) we get an r-partite graph. Since the classes A

9



D C

X

A B

X1 X2 Xr−2

Figure 1: Graph G

and X are the two smallest class sizes, one cannot do better as observed in [6, Theorem
7]. Hence

Dr(G) ≥ 2r
3
√

3
α3/2n2.

Let us now count the number of edges of G. The number of edges incident to X is

e(X,Xc) =
(2r

3 α
)(

2
√
α

3

)
n2 +

(2r
3 α

)(1− 2r
3 α

r
(r − 2)

)
n2

=
(2

3(r − 2)α+ 4r
3
√

3
α3/2 − 4r(r − 2)

9 α2
)
n2.

Using that |A| + |C| = |B| + |D| = |X1|, we have that the number of edges inside
A ∪B ∪ C ∪D ∪X1 ∪ · · · ∪Xr−2 is

e(Xc) = |X1|2
(
r

2

)
− |A||B| =

(
1− 2r

3 α

r
n

)2(
r

2

)
− 1

3αn
2

= 1
r2

(
r

2

)
n2 − 4r

3
1
r2α

(
r

2

)
n2 + 4

9α
2
(
r

2

)
n2 − 1

3αn
2

=
(

1− 1
r

)
n2

2 −
2
3(r − 1)αn2 − 1

3αn
2 + 4

9α
2
(
r

2

)
n2.
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Thus, the number of edges of G is

e(G) = e(Xc) + e(X,Xc) =
(

1− 1
r

)
n2

2 − αn
2 + 4r

3
√

3
α3/2n2 − 2r(r − 3)

9 α2n2

≥ ex(n,Kr+1)− αn2 + 4r
3
√

3
α3/2n2 − 2r(r − 3)

9 α2n2,

where we applied Turán’s theorem in the last step.
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