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József Balogh ∗ Anastasia Halfpap† Bernard Lidický ‡
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Abstract

The minimum positive co-degree of a nonempty r-graph H, denoted by δ+r−1(H),
is the largest integer k such that for every (r − 1)-set S ⊂ V (H), if S is contained in
a hyperedge of H, then S is contained in at least k hyperedges of H. Given a family
F of r-graphs, the positive co-degree Turán function co+ex(n,F) is the maximum of
δ+r−1(H) over all n-vertex r-graphs H containing no member of F . The positive co-

degree density of F is γ+(F) = lim
n→∞

co+ex(n,F)
n . While the existence of γ+(F) is proved

for all families F , only few positive co-degree densities are known exactly.
For a fixed r ≥ 2, we call α ∈ [0, 1] an achievable value if there exists a family of

r-graphs F with γ+(F) = α, and call α a jump if for some δ > 0, there is no family
F with γ+(F) ∈ (α, α + δ). Halfpap, Lemons, and Palmer [25] showed that every
α ∈ [0, 1r ) is a jump. We extend this result by showing that every α ∈ [0, 2

2r−1) is
a jump. We also show that for r = 3, the set of achievable values is infinite, more
precisely, k−2

2k−3 for every k ≥ 4 is achievable. Finally, we determine two additional
achievable values for r = 3 using flag algebra calculations.
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1 Introduction

An r-graph is a hypergraph in which all hyperedges have size r. We often refer to the
hyperedges of an r-graph as r-edges. Given a family of r-graphs F , the Turán number
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ex(n,F) is the maximum number of r-edges possible in an n-vertex r-graph that contains
no member of F as a subhypergraph. When r = 2, the function ex(n, F ) is well-studied and
relatively well-understood. Given a set of r-graphs F , we define the Turán density of F to
be

π(F) := lim
n→∞

ex(n,F)(
n
r

) .

The Erdős-Stone Theorem [16] as pointed out by Erdős-Simonovits [15] determines the Turán
density of every 2-graph as a function of its chromatic number.

Theorem 1.1 (Erdős-Stone). Let F be a 2-graph with χ(F ) = k. Then π(F ) = 1− 1
k−1

.

Note that an extension of Theorem 1.1 also claims that for every family F of 2-graphs,
π(F) is equal to the minimum of 1 − 1/(χ(F ) − 1) over F ∈ F . While Theorem 1.1 does
not give us perfect information about Turán numbers (in particular, for bipartite graphs F ,
it only demonstrates that ex(n, F ) = o(n2)), it yields a good “approximate” understanding
of Turán numbers by fully describing Turán densities.

For r ≥ 3, we do not have an analogue to Theorem 1.1, and much less is known about
Turán densities. Even π(F) could be smaller than min{π(F ) : F ∈ F}, as observed by
Balogh [4]. Not only do we lack a general theory, but the Turán densities of many small r-
graphs remain unknown, despite great effort. Famously, the Turán density of the tetrahedron
K3

4 is still undetermined. The difficulty of determining Turán densities for hypergraphs has
motivated the study of various other hypergraph extremal functions, typically maximizing
some variant of the minimum degree. In particular, given an r-graph H, the co-degree of
a set S ∈

(
V (H)
r−1

)
is the number of r-edges containing S, and the minimum co-degree of

H, denoted by δr−1(H), is the smallest co-degree realized by an (r − 1)-set contained in
V (H). The co-degree Turán function of a family of r-graphs F , denoted by coex(n,F), is
the largest possible minimum co-degree of an n-vertex r-graph containing no member of F
as a subhypergraph.

Mubayi and Zhao [33] showed that the co-degree density

γ(F) := lim
n→∞

coex(n,F)

n

exists for every family of r-graphs F , and studied the general behavior of coex(n,F). Note
that for every family of 2-graphs F we have γ(F) = π(F); however, for r ≥ 3, co-degree
Turán problems are not equivalent to Turán problems, and co-degree density does not behave
in the manner suggested by Theorem 1.1. We first define the notion of a jump in density.

Definition 1.2. Fix r ≥ 2. Suppose φ is a function that maps families of r-graphs to [0, 1].
We say that α ∈ [0, 1) is a φ-jump if there exists δ ∈ (0, 1− α) such that for no family F of
r-graphs, φ(F) ∈ (α, α + δ).

While Theorem 1.1 shows that co-degree density (and Turán density) jumps everywhere
when r = 2, Mubayi and Zhao showed that co-degree density does not jump when r ≥ 3.
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Theorem 1.3 (Mubayi-Zhao [33]). For r ≥ 3, no α ∈ [0, 1) is a γ-jump.

This co-degree phenomenon was further investigated in [13,37].
We remark that Theorem 1.3 suggests a substantial difference in behavior between Turán

and co-degree Turán problems for hypergraphs. We know for every r ≥ 3 that every α ∈
[0, r!/rr) is a π-jump. On the other hand, π is also known to not jump in infinitely many
places for r ≥ 3; see [3, 22].

The minimum positive co-degree of an r-graph H is the largest integer k such that,
whenever S ∈

(
V (H)
r−1

)
is contained in some r-edge of H, then S is contained in at least k

r-edges of H. The edgeless r-graph is defined to have positive co-degree zero. We denote
the minimum positive co-degree of H by δ+r−1(H). We define the positive co-degree Turán
number, denoted by co+ex(n,F), to be the largest possible minimum positive co-degree of
an n-vertex r-graph containing no member of F as a subhypergraph.

Balogh, Lemons, and Palmer [6] introduced the minimum positive co-degree as an al-
ternative notion of minimum degree in r-graphs. Since then this parameter has already
been studied from several angles. The concept of co+ex(n,F) was recently introduced by
Halfpap, Lemons, and Palmer [25]. The investigation of minimum positive co-degree as an
extremal parameter is partially motivated by the admissibility of constructions that mimic
the extremal graphs for classical questions. For example, given an r-graph H, the t-blow-up
H[t] of H is the r-graph obtained by replacing each vertex vi ∈ V (H) with a class Vi of t
vertices, where a set of r-vertices spans an r-edge if and only if they belong to r distinct
classes of H[t] which correspond to an r-edge in H. In classical Turán theory, graph blow-
ups yield extremal or nearly extremal constructions for all non-bipartite forbidden graphs.
Blow-ups also occur as extremal examples for other types of thresholds—for instance, one of
the constructions demonstrating the tightness of Dirac’s Theorem is a slightly unbalanced
blow-up of an edge (i.e., a complete bipartite graph).

For r ≥ 3 and every r-graph H a sufficiently large blow-up of H has minimum co-degree
0, which means that even after adding o(n3) hyperedges, blow-ups will not provide extremal
constructions for minimum co-degree density problems. However, H[t] inherits the positive
co-degree properties of H. Thus, blow-ups (as well as other constructions with co-degree 0
sets, such as r-graphs containing large strongly independent sets or multiple components)
are potential extremal examples for positive co-degree problems. Previous results suggest
that extremal constructions for positive co-degree problems in fact do often look analogous
to classical extremal constructions. See [25] for extremal constructions avoiding some small
3-graphs, and [26] on positive co-degree analogs of Dirac’s Theorem, for which the extremal
constructions also naturally generalize the graph extremal examples (and have minimum co-
degree 0). Due to the expanded range of potential constructions, co+ex(n,F) and coex(n,F)
are generally not equal, and they appear to behave differently.

Define the positive co-degree density of a family of r-graphs F as the limit

γ+(F) := lim
n→∞

co+ex(n,F)

n
.

The existence of γ+(F ) was established by Halfpap, Lemons, and Palmer [25] via a con-
structive argument, which can be generalized to finite families F . Pikhurko [38] gave a
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probabilistic argument establishing that γ+(F) exists for all families F .

Proposition 1.4 (Halfpap-Lemons-Palmer [25]). Fix r ≥ 2 and let F be a family of r-graphs.
Then

γ+(F) ∈ {0} ∪
[
1

r
, 1

]
.

In other words, every α ∈ [0, 1/r) is a γ+-jump. Proposition 1.4 describes behavior similar
to that of the classical Turán density. Every r-graph F that is contained in some blow-up of
an r-edge can be shown to be “degenerate”, having co+ex(n, F ) = o(n), so γ+(F ) = 0. On
the other hand, if F is not contained in any blow-up of an r-edge, then γ+(F ) ≥ 1

r
, since the

balanced n-vertex blow-up of an r-edge has minimum positive co-degree approximately n
r
.

An r-graph F is k-partite if there is a partition of V (F ) into k classes such that each edge
intersects each part at most once.

Although Proposition 1.4 suggests that γ and γ+ exhibit fundamentally different beha-
viors, it is not clear what behavior to expect from γ+. Currently, we know the exact value
γ+(F ) only for very few 3-graphs F . Halfpap, Lemons, and Palmer [25] determined the
values of γ+(F ) for many small 3-graphs F , and bounded γ+(F ) in some other instances.
Various authors have reported improvements on several of these initial bounds, with the
current best known values summarized in Table 1. For comparison, the best-known bounds
on π and γ for these 3-graphs are also provided. Graphs not defined in Table 2 are defined
by their edge sets as

K3−
4 = {123, 124, 134}, F5 = {123, 124, 345}, F = {123, 345, 156, 246, 147, 257, 367},
Cℓ = {123, 234, 345, . . . , (ℓ− 2)(ℓ− 1)ℓ, (ℓ− 1)ℓ1, ℓ12}, C−

ℓ = Cℓ − {ℓ12}.

See [5, 25] for more details about 3-graphs in Table 1. Note that the 3-graph denoted here
as K3−

4 is often called K−
4 in the literature; we adopt the notation K3−

4 to distinguish this
3-graph from the 2-graph obtained by deleting an edge from K4, which we denote by K−

4 .
Kamčev, Letzter, and Pokrovskiy [27] proved that the Turán density of longer tight cycles

Cℓ is 2
√
3 − 3, when ℓ is not multiple of three and sufficiently large (when ℓ is divisible by

three, then Cℓ is 3-partite, hence its Turán density is 0). Similarly, Balogh and Luo [7] proved
for ℓ sufficiently large and not divisible by 3 that the Turán density of C−

ℓ is 1/4. Recently,
this was proved for every ℓ ≥ 5 by Lidický, Mattes, and Pfender [29]. That the co-degree
density is 1/3 for tight cycles of length at least 10 and not divisible by 3 was proved by Piga,
Sanhueza-Matamala, and Schacht [36] and Ma [30]. On the other hand, the fact that the
co-degree density of C−

ℓ is 0 is due to Piga, Sales, and Schülke [37].
Given r ≥ 2, we call α ∈ [0, 1] an achievable value (for γ+) if there exists a family F of

r-graphs such that γ+(F) = α. Before our article, the only known achievable values of γ+

for r = 3 were 0, 1/3, 1/2, and 2/3.
Our goal is to understand the positive co-degree density by demonstrating additional

γ+-jumps for every r, as well as by expanding the known list of achievable values of γ+ for
r = 3. Our paper is organized as follows. In Section 2, we summarize our main results.
In Section 3, we state some additional definitions and lemmas which will be used in our
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F ≤ π(F ) π(F ) ≤ ≤ γ(F ) γ(F ) ≤ ≤ γ+(F ) γ+(F ) ≤
K3−

4 2/7 [21] 0.28689 [43] 1/4 [34] 1/4 [18] 1/3 [25] 1/3 [25]
F5 2/9 [8] 2/9 [20] 0 [5] 0 [5] 1/3 [25] 1/3 [25]
F3,2 4/9 [32] 4/9 [23] 1/3 [17] 1/3 [17] 1/2 [25] 1/2 [25]
F 3/4 [41] 3/4 [12] 1/2 [31] 1/2 [31] 2/3 [25] 2/3 [25]
K3

4 5/9 [42] 0.5615 [2] 1/2 [11] 0.529 [5] 1/2 [25] 0.543 [44]
F3,3 3/4 [32] 3/4 [32] 1/2 [5] 0.604 [5] 3/5 [25] 0.616

C5 2
√
3− 3 [32] 0.46829 [43] 1/3 [5] 0.3993 [5] 1/2 [25] 1/2 [45]

C7 2
√
3− 3 [32] 0.464186 1/3 [5] 0.371 1/2 [24] 1/2 [24]

C−
5 1/4 [32] 1/4 [29] 0 [5] 0 [35] 1/3 [25] 1/3 [45]

J4 1/2 [9] 0.50409 [43] 1/4 [5] 0.473 [5] 4/7 [25] 4/7
F4,2 4/9 0.4933328 1/3 0.4185 3/5 3/5

Table 1: Best-known density bounds for π, γ, and γ+.

proofs. In Section 4, we demonstrate further γ+-jumps for every r, and for r = 3 establish
an infinite set of achievable values for γ+. In Section 2.4, we use flag algebras to exactly
determine γ+ for two additional 3-graphs, hence adding two values to the list of achievable
values of γ+. Finally, in Section 6, we have some concluding remarks and list a wide variety
of open problems in the area.

2 New results

Our first main theorem extends the range of jumps described in Proposition 1.4. We will
need the following definition. An r-triangle, denoted by T r, is an r-graph with r+1 vertices
and three r-edges. Notice that T r can be obtained from the 2-graph triangle T 2 by adding
r−2 vertices and including them to each of the three edges. Such hypergraphs are sometimes
called daises in the literature. The T 2 part of a T r is called the base of the T r. Notice that
T 3 is the same as K3−

4 .

Theorem 2.1. Let F be a family of r-graphs for r ≥ 2. Then

γ+(F) ∈
{
0,

1

r

}
∪
[

2

2r − 1
, 1

]
.

Thus, every α ∈ [0, 2
2r−1

) is a γ+-jump.

Moreover, γ+(F) = 0 if and only if some member of F is r-partite, and γ+(F) = 1
r
if

and only if no member of F is r-partite, but some member of F is contained in a blow-up
of some T r.

For r = 3, we also provide an infinite set of achievable values for γ+, based on forbidden
families involving the following 3-graphs. For k ≥ 3, let Jk be the (k + 1)-vertex 3-graph,
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K3
4

1 2 3
1 2 4
1 3 4

2 3 4

12

3 4

F3,2
1 2 3
1 4 5

2 4 5
3 4 5

1

2

3

5

4

F4,2

1 2 3
1 2 4
1 3 4
1 5 6

2 5 6
3 5 6

4 5 6
1

2

3
4

6

5

F3,3

1 2 3
1 4 5
1 4 6
1 5 6

2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

3

2

1

6

5

4

J4
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5

1

23

4 5

J5

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

1

Table 2: Small 3-uniform hypergraphs.

on vertex set [k + 1], with 3-edges of the form 1ij for every i, j ∈ {2, . . . , k + 1}. Let K3
4

denote the complete 4-vertex 3-graph, and let F3,2 denote the 5-vertex 3-graph, on vertex
set {1, 2, 3, 4, 5}, with edge set {123, 124, 125, 345}. See Table 2 for an illustration of these
and other relevant 3-graphs.

Theorem 2.2. For every k ≥ 4,

γ+({K3
4 , F3,2, Jk}) =

k − 2

2k − 3
.

We also investigate whether the densities exhibited by Theorem 2.2 can be achieved by
forbidding a single 3-graph. For k = 4, we have γ+({K3

4 , F3,2, J4}) = 2
5
. Let F1 be a 7-vertex

3-graph with edges {125, 135, 235, 126, 146, 246, 347}, see Figure 2. We show that F1 has
positive co-degree density 2

5
.

6



Theorem 2.3. γ+(F1) =
2
5
.

Finally, we utilize flag algebras to determine the positive co-degree densities of two graphs,
which exhibit new achievable values of γ+ larger than 1

2
. We determine γ+(J4), and show

that the (asymptotic) extremal construction is the blow-up of the complement of the Fano
plane. Notice that J4 is a 3-daisy; see [14] for recent progress on Turán densities of r-daisies.

Theorem 2.4. γ+(J4) =
4
7
.

We introduce another 3-graph, which will have a different new density. Let F4,2 be the
6-vertex 3-graph with edges {123, 124, 134, 156, 256, 356, 456}, depicted in Table 2. Note that
in F4,2 the common neighborhood of 5 and 6 is {1, 2, 3, 4}, and {1, 2, 3, 4} spans a K3−

4 . We
determine γ+(F4,2), and show that its (asymptotic) extremal construction is the balanced
blow-up of K3

5 .

Theorem 2.5. γ+(F4,2) =
3
5
.

We also include some non-tight results obtained using flag algebras.

Theorem 2.6. The following bounds hold.

π(F4,2) ≤ 0.4933327, γ(F4,2) ≤ 0.4185, γ+(F3,3) ≤ 0.616.

The lower bounds in Table 1 for π(F4,2) and γ(F4,2) come from the lower bound construc-
tions for F3,2.

3 Preliminaries

We begin by stating some results related to supersaturation and a hypergraph removal
lemma. The hypergraph removal lemma states that an r-graph containing only few copies
of some subhypergraph F can be made F -free by the deletion of only few r-edges. For a
discussion of removal lemmas, including the below formulation, see [10].

Lemma 3.1. Fix α > 0 and let F be an r-graph. There exists δ > 0 such that if H is an
n-vertex r-graph containing at most δn|V (F )| copies of F , then there exists E ′ ⊂ E(H) such
that |E ′| ≤ αnr and H − E ′ is F -free.

Although an r-graph with o(n|V (F )|) copies of F can be made F -free by deleting o(nr)
r-edges, it is not obvious that the deletion would change the minimum positive co-degree
by only o(n). The following “clean-up” lemma due to Halfpap, Lemons, and Palmer [25]
allows us to apply the hypergraph removal lemma to minimum positive co-degree problems.
Roughly, this lemma guarantees that any positive co-degree drop arising from the deletion
of a small set of r-edges can be mitigated by the deletion of another set of r-edges.
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Lemma 3.2 (Halfpap-Lemons-Palmer [25]). Let H be an n-vertex r-graph and fix 0 < ε < 1
small enough that (r + 1)!ε1/2

r−1
nr < |E(H)|. Let H1 be a subhypergraph of H obtained

by the deletion of at most εnr r-edges. Then H1 has a subhypergraph H2 with δ+r−1(H2) ≥
δ+r−1(H)− 2rr!ε1/2

r−1
n.

In practice it is not difficult to fulfill the condition in Lemma 3.2 that (r+1)!ε1/2
r−1

nr <
|E(H)|, since δ+r−1(H) can be used to give a lower bound on |E(H)|.

Lemma 3.3 (Halfpap-Lemons-Palmer [25]). Fix c > 0 and suppose H is an r-graph with
δ+r−1(H) ≥ cn. Then, for n large enough, |E(H)| ≥ 1

2
cr

r!
nr.

Thus, for an n-vertex r-graph H with n sufficiently large and δ+r−1(H) ≥ cn, we can
choose ε in Lemma 3.2 as a function of c and r alone.

Lemmas 3.1 and 3.2 can be used to prove supersaturation and related properties for
minimum positive co-degree problems. In particular, we have the following basic formulation.

Theorem 3.4 (Halfpap-Lemons-Palmer [25]). Fix ε > 0 and let F be an r-graph. Then
there exists δ > 0 such that, if H is an n-vertex r-graph with

δ+r−1(H) > co+ex(F ) + εn,

then H contains at least δn|V (F )| copies of F .

By a standard argument (see, e.g., [28]), if δ > 0 and t ∈ N are fixed and n is sufficiently
large, then every n-vertex r-graph H containing δn|V (F )| copies of F must contain F [t]. Thus,
as an immediate consequence of Theorem 3.4, we have blow-up invariance for co+ex(n, F ).

Corollary 3.5 (Halfpap-Lemons-Palmer [25]). Let F be an r-graph and t a positive integer.
Then

co+ex(n, F ) ≤ co+ex(n, F [t]) ≤ co+ex(n, F ) + o(n).

We remark that Corollary 3.5 is useful because it implies that if H and F are r-graphs
such that F is contained in H[t] for some t, then γ+(F ) ≤ γ+(H). For example, when paired
with the facts that a single 3-edge e has γ+(e) = 0 and γ+(C5) =

1
2
, and with an appropriate

lower bound construction, Corollary 3.5 implies that γ+(Cℓ) = 0 if ℓ ≡ 0 (mod 3) and
γ+(Cℓ) =

1
2
if ℓ ̸≡ 0 (mod 3) and Cℓ is contained in a blow-up of C5. In fact, this resolves

the positive co-degree density of every tight cycle except for C4 = K3
4 and C7. Halfpap [24]

proved γ+(C7) = 1/2.
In Section 4, we will apply essentially the same idea, finding one construction whose

blow-up contains another and then relating their positive co-degree densities. However, for
our purposes, a somewhat different formulation from the above statements will be desirable.
The proof ideas for Theorem 3.4 and Corollary 3.5 are used to derive the following lemma.

Lemma 3.6. Let F be a fixed r-graph on f vertices and F = {F1, F2, . . . , Fk} a finite family
of r-graphs such that Fi[f ] contains F for every i ∈ [k]. For every d ∈ [0, 1), if γ+(F ) > d,
then for some β > 0 and n sufficiently large there exists an n-vertex, {F} ∪ F-free r-graph
H with δ+r−1(H) > (d+ β)n.
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Proof. Given d as stated, choose β > 0 so that γ+(F ) ≥ d + 3β, and α > 0 such that

2rr!α1/2r−1
< β and (r + 1)!α1/2r−1

nr < 1
2
(2β)r

r!
nr. For each i ∈ [k], take δi > 0 as guaranteed

by Lemma 3.1 such that any hypergraph H containing fewer than δin
|V (Fi)| copies of Fi can

be made Fi-free by the deletion of at most α
k
|E(H)| r-edges. Choose N ∈ N sufficiently large

such that for all n ≥ N , we have:

• co+ex(n, F ) ≥ (d+ 2β)n;

• for each i ∈ [k], if H is an n-vertex graph containing δin
|V (Fi)| copies of Fi, then H

contains Fi[f ].

Fix n ≥ N and let H be an n-vertex r-graph with δ+r−1(H) = co+ex(n, F ). Then H
contains fewer than δin

|V (Fi)| copies of Fi for every i ∈ [k], and thus can be made F -free by
deletion of at most α|E(H)| edges by repeated application of Lemma 3.1. Since we have

(r + 1)!α1/2r−1

nr <
1

2

(2β)r

r!
nr ≤ |E(H)|

by Lemma 3.3 and the definition of α, we can now apply Lemma 3.2 to delete an additional
set of r-edges, resulting in an {F} ∪ F -free, n-vertex r-graph H ′ with

δ+r−1(H
′) ≥ δ+r−1(H)− 2rr!α1/2r−1

n > δ+r−1(H)− βn ≥ (d+ β)n.

Lemma 3.6 is an important tool in finding positive co-degree densities as it essentially
allows us to expand our list of forbidden configurations.

We conclude this section with some relevant definitions and notation. We often consider
4-vertex cliques with one edge removed; these may be 2-uniform or 3-uniform. To avoid
ambiguity, we denote by K−

4 the 2-graph on 4 vertices and 5 edges, and by K3−
4 the 3-graph

on 4 vertices and three 3-edges.
Some of the hypergraphs we consider can be naturally described as arising from lower-

uniformity hypergraphs. We define the following operation, which increases the uniformity
of a hypergraph by one. Given an r-graph H, the suspension Ĥ is the (r + 1)-graph with
vertex set consisting of V (H) and one new vertex v, and (r + 1)-edges

E(Ĥ) = {e ∪ {v} : e ∈ E(H)}.

We call V (H) the r-graph vertices and v the spike vertex. Notice that the (r+1)-triangle
T r+1 is a suspension of the r-triangle T r.

Let H be an r-graph. For a subset X = {x1, . . . , xr−1} of size r − 1 of vertices of H,
denote by N(X) the set of all vertices v such that X∪{v} ∈ E(H). We use d(X) := |N(X)|,
which is the co-degree of X. To simplify notation we use N(x1, . . . , xr−1) := N(X) and
d(x1, . . . , xr−1) := d(X). We call N(X) the neighborhood of X.

In a 3-graph H, the link graph L(v) of a vertex v ∈ V (H) is the auxiliary 2-graph on
V (H)− {v} where xy is an edge if and only if vxy is a 3-edge of H.

For 3-graphs G and H the density of G in H, denoted by d(G,H), is the number of
subgraphs of H isomorphic to G divided by

(|V (H)|
|V (G)|

)
. Notice that the density is always in

[0, 1].
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4 Jumps and positive co-degree densities below 1
2

Proof of Theorem 2.1. Let F be a family of r-graphs. By Proposition 1.4, γ+(F) ∈ {0} ∪
[1
r
, 1], so it is sufficient to show that there is no family F with γ+(F) ∈ (1

r
, 2
2r−1

).
First assume that forbidding F implies that some blow-up T r[t] of T r is also forbidden

(recall, T r denotes the triangle with three edges on r + 1 vertices). Corollary 3.5 gives
γ+(T r[t]) = γ+(T r). As

γ+(F) ≤ γ+(T r[t]) = γ+(T r),

it is sufficient to show that γ+(T r) ≤ 1
r
.

Suppose that H is an n-vertex r-graph with δ+r−1(H) > n
r
, and let v1v2 . . . vr be an r-edge

of H. Consider the r vertex sets, each of size r− 1, contained in the r-edge v1v2 . . . vr. Each
of them is a set with positive co-degree, hence each has neighborhood of size greater than n

r
.

Since there are r such sets, there must be a vertex, say vr+1, which is contained in at least
two such neighborhoods. Relabeling if needed, we may assume that

vr+1 ∈ N(v1, . . . , vr−2, vr−1) ∩N(v1, . . . , vr−2, vr).

The three r-edges v1v2 . . . vr−2vr−1vr, v1v2 . . . vr−2vr−1vr+1, and v1v2 . . . vr−2vrvr+1 form
T r. Thus, 1

r
≥ γ+ (T r) ≥ γ+ (F). This implies that blow-ups of T r are F -free.

Now assume that forbidding F does not exclude any blow-up of T r. Consider the following
n-vertex blow-up of T r. The three vertices corresponding to the base triangle T 2 are blown
up to classes of size n

2r−1
. All other vertices are blown up to classes of size 2n

2r−1
. In total,

we have 3 classes of size n
2r−1

and r − 2 classes of size 2n
2r−1

, for a total of n vertices, as
desired. A set of r − 1 vertices whose intersection with any class has at least two vertices
will have co-degree 0. A set of r − 1 vertices which intersects all three classes of size n

2r−1

will also have co-degree 0. All other sets of size r−1 have neighborhood of size exactly 2n
2r−1

,

corresponding either to two classes of size n
2r−1

or one class of size 2n
2r−1

. This construction

implies γ+(F) ≥ 2
2r−1

.

Now, we can characterize families of r-graphs F with γ+(F) ∈ {0, 1
r
}. Corollary 3.5

establishes that if F ∈ F is r-partite, then γ+(F ) = 0, so γ+(F) = 0 as well. If no F ∈ F is
r-partite, then any blow-up of an r-edge is F -free, so γ+(F) ≥ 1

r
. Thus, γ+(F) = 0 if and

only if some F ∈ F is r-partite. Similarly, if an F ∈ F is contained in a blow-up of T r, then

γ+(F) ≤ γ+(F ) ≤ γ+(T r) ≤ 1

r
.

Thus, if some F ∈ F is contained in some T r blow-up but no member of F is r-partite, then
we have γ+(F ) = 1

r
. On the other hand, if no member of F is contained in any blow-up of

T r, then the above-described blow-up of T r establishes that γ+(F) ≥ 2
2r−1

.

Remark 4.1. The characterization in Theorem 2.1 implies the positive co-degree densities
for a variety of natural 3-graphs. It is straightforward to verify that C−

ℓ (the ℓ-vertex (tight)
cycle with one edge deleted) is contained in a sufficiently large blow-up of K3−

4 . Moreover,
C−

ℓ is 3-partite if and only if ℓ ≡ 0 (mod 3). Thus, γ+(C−
ℓ ) = 0 when ℓ ≡ 0 (mod 3), and

γ+(C−
ℓ ) =

1
3
otherwise. This generalizes the result of Wu [45] that γ+(C−

5 ) =
1
3
.
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The next natural question is whether Theorem 2.1 is best possible. That is, does there
exist some family F of r-graphs with γ+(F) = 2

2r−1
? We answer this question in the

affirmative when r = 3. Furthermore, we show that an infinite number of densities in the
interval [2

5
, 1
2
] are achievable when r = 3. We begin by exhibiting a family F with γ+(F) = 2

5
.

We first define F++1
3,2 and F++2

3,2 , two superhypergraphs of F3,2. Each is created by adding two
edges to F3,2. Let F3,2 have vertex set {a, b, c, d, e} and edge set {abc, abd, abe, cde}. Then we
create F++1

3,2 by adding acd and ace, and we create F++2
3,2 by adding acd and bce, see Figure 1.

a b

d c e

a b

d c e

a b

d c e

Figure 1: F3,2 and two superhypergraphs, F++1
3,2 and F++2

3,2 .

Proposition 4.2. For F = {K3
4 , F

++1
3,2 , F++2

3,2 , J4} and F ′ = {K3
4 , F3,2, J4} we have

γ+(F) = γ+(F ′) =
2

5
.

Proof. Since F3,2 is a subgraph of both F++1
3,2 , F++2

3,2 , hence γ+(F) ≥ γ+(F ′). As noted in

the proof of Theorem 2.1, an appropriately balanced n-vertex blow-up of T 3 = K3−
4 has

minimum positive co-degree 2n
5
+ O(1). Any blow-up of K3−

4 is J4-free and F3,2-free since
K3−

4 is 4-partite and neither of F3,2 and J4 are. Since blow-ups K3−
4 are also K3

4 -free, we
have 2

5
≤ γ+(F ′) ≤ γ+(F).

Next we show γ+(F) ≤ 2
5
, which completes the proof. Fix an ε > 0 and suppose that H

is an n-vertex 3-graph with δ+2 (H) ≥
(
2
5
+ ε
)
n for sufficiently large n. Since γ+(K3−

4 ) = 1
3
,

H contains K3−
4 , say with vertex set {a, b, c, d} and edge set {abc, abd, acd}.

Consider the following five positive co-degree pairs: ab, ac, ad, bc, and bd. Since δ+2 (H) ≥(
2
5
+ ε
)
n, there exists some vertex e that is in the neighborhood of at least three of these

pairs. Note that c and d are symmetric; up to this symmetry, we have six cases based on
which three of these five pairs form an edge with e.

(1) If abe, ace, ade ∈ E(H) then abc, abd, acd, abe, ace, ade form a J4.

(2) If abe, ace, bce ∈ E(H) then abc, abe, ace, bce form a K3
4 .

(3) If abe, ace, bde ∈ E(H) then acb, acd, ace, bde form an F3,2. Moreover, abd and abe are
3-edges, so {a, b, c, d, e} spans an F++1

3,2 .

(4) If ace, ade, bce ∈ E(H) then adb, adc, ade, bce form an F3,2. Moreover, abc and ace are
3-edges, so {a, b, c, d, e} spans an F++1

3,2 .

(5) If abe, bce, bde ∈ E(H) then bea, bec, bed, acd form an F3,2. Moreover, bac and bad are
3-edges, so {a, b, c, d, e} spans an F++1

3,2 .
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(6) If ace, bce, bde ∈ E(H) then acb, acd, ace, bde form an F3,2. Moreover, abd and cbe are
3-edges, so {a, b, c, d, e} spans an F++2

3,2 .

This implies γ+(F) ≤ 2
5
.

We use Proposition 4.2 as the base of an inductive argument, showing that an infinite
number of positive co-degree densities in [2

5
, 1
2
] are achievable by families of 3-graphs.

Proof of Theorem 2.2. For a lower bound, observe that any blow-up of Jk−1 is {K3
4 , F3,2, Jk}-

free, and that an appropriately balanced n-vertex blow-up of Jk−1 (with class sizes k−2
2k−3

,
1

2k−3
, . . . , 1

2k−3
) has minimum positive co-degree

(
k−2
2k−3

)
n+O(1). Thus, γ+({K3

4 , F3,2, Jk}) ≥
k−2
2k−3

for all k ≥ 4.
To show that this lower bound is best-possible, we use induction on k. Proposition 4.2

yields the statement for k = 4. We assume the statement holds for k ≥ 4, and prove
it for k + 1. Suppose that H is an n-vertex 3-graph with minimum positive co-degree
δ+2 (H) > k−1

2k−1
n where is n sufficiently large. If H contains one of K3

4 or F3,2, then we are

done, so suppose not. Then by the inductive hypothesis, γ+({K3
4 , F3,2, Jk}) = k−2

2k−3
< k−1

2k−1
,

so H contains a Jk, say J (here we use that n is large enough). Let V (J) = {v1, . . . , vk+1},
where v1 is the universal vertex of J (i.e., E(J) = {v1vivj : 2 ≤ i < j ≤ k + 1}). Define

S = {(v1, vi) : 2 ≤ i ≤ k + 1} ∪ {(vi, vi+1) : 2 ≤ i ≤ k}.

Observe that |S| = 2k − 1 and every vertex pair in S has positive co-degree in H. Since
δ+2 (H) > k−1

2k−1
n, there exists a vertex u ∈ V (H) which is in the neighborhood of at least k

pairs (vi, vj) ∈ S. Note that u may be an element of V (J). However, if (vi, vj) ∈ S is a pair
such that u ∈ N(vi, vj), then u ̸∈ {vi, vj}.

If u ∈ N(v1, vi) for every i ∈ {2, . . . , k + 1} then u ̸∈ V (J), and V (J) ∪ {u} spans Jk+1,
with universal vertex v1.

Hence, we may assume that there is some i ≥ 2 for which u ∈ N(vi, vi+1). Our goal in
this case is to find F3,2. Observe that there must be a j such that u ∈ N(v1, vj). If there
is such a j ̸∈ {i, i + 1}, then u ̸∈ {v1, vi, vi+1, vj}, and {v1, vi, vi+1, vj, u} will span an F3,2,
using 3-edges v1vjvi, v1vjvi+1, v1vju, vivi+1u. Hence, we may assume that every such j is in
{i, i + 1}. In particular, u is in at most two neighborhoods of the form N(v1, vj). Since
k ≥ 4 and u is in the neighborhood of at least k pairs from S, we have u ∈ N(vℓ, vℓ+1) for
some ℓ ̸= i. Now, if u ∈ N(v1, vi) and u ∈ N(v1, vi+1), then {v1, vi, vi+1, u} spans a K3

4 . If
not, then without loss of generality u ∈ N(v1, vi) and u is in the neighborhood of the three
pairs (vi, vi+1), (vℓ, vℓ+1), (vm, vm+1) for some ℓ,m. One of these pairs, say (vℓ, vℓ+1), must be
disjoint from (v1, vi), in which case we observe that {v1, vi, vℓ, vℓ+1, u} will span an F3,2.

Although infinitely many positive co-degree densities in [2
5
, 1
2
] can be achieved by forbid-

den families of 3-graphs, it remains unclear whether all of these densities can be achieved by
forbidding a single 3-graph. Using Proposition 4.2, we now show that 2

5
is indeed achievable

by a single 3-graph. We begin by defining two new 3-graphs F1 and F2 as follows.
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V (F1) = {a, b, c, d, e, f, g}, E(F1) = {abe, ace, bce, abf, adf, bdf, cdg},
V (F2) = {a, b, c, d, e, g}, E(F2) = {abe, ace, bce, ade, bde, cdg}.

We depict F1 and F2 in Figure 2. We remark that each of F1, F2 can be viewed as a
partial identification of two K3−

4 copies, along with an extra 3-edge (using g) which ensures
that c and d have positive co-degree.

c
a

b
d

e

g

b
c

a
d

e

c
a

b

d

e f

g

b
c

a d

e f

F2F1

Figure 2: F1 and F2.

Note that in both F1 and F2, the vertex g has very little structural interaction with the
other vertices. Suppose H is isomorphic to the subhypergraph of F1 (resp. F2) induced on
V (F1)\{g} (resp. V (F2)\{g}). ThenH is guaranteed to extend to F1 (resp. F2) if d(c, d) > 4.
We will be working in 3-graphs with minimum positive co-degree much larger than 4, so to
find copies of F1 or F2, it will suffice to find F1 \ {g} or F2 \ {g} and to demonstrate that
the pair {c, d} has positive co-degree.

Note that F2 is 5-partite, so γ+(F2) ≥ 1
2
. However, F1 is 4-partite, and is contained in

a blow-up of J4, but it is not contained in a blow-up of J3 = K3−
4 . Thus, γ+(F1) ≥ 2

5
. We

now prove that γ+(F1) =
2
5
.

Proof of Theorem 2.3. For a contradiction, assume that there exists ε > 0 such that γ+(F1) ≥
2
5
+ 3ε. We begin with a claim that will allow us to expand our forbidden family.

Claim 4.3. The 3-blow-up of each member of the following family

F = {K3
4 , J4, F

++1
3,2 , F2}

contains F1.

Proof. Observe that F2 can be obtained from F1 by identifying e and f . Using the notation

V (K3
4) = {1, 2, 3, 4}, E(K3

4) = {123, 124, 134, 234},
V (J4) = {1, 2, 3, 4, 5}, E(J4) = {123, 124, 125, 134, 135, 145},

V (F++1
3,2 ) = {1, 2, 3, 4, 5}, E(F++1

3,2 ) = {123, 124, 125, 345, 134, 135}
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the following maps prove the claim for K3
4 , J4, and F++1

3,2 .
f1 : F1 → K3

4 : a → 1, b → 2, c → 3, d → 4, e → 4, f → 3, g → 1.
f2 : F1 → J4 : a → 2, b → 3, c → 4, d → 5, e → 1, f → 1, g → 1.
f3 : F1 → F++1

3,2 : a → 2, b → 3, c → 4, d → 5, e → 1, f → 1, g → 3.

Thus, by Lemma 3.6, for n large enough there exists a 3-graph H with δ+2 (H) ≥
(
2
5
+ ε
)
n

which is {F1} ∪ F -free. By Proposition 4.2,

γ+({K3
4 , J4, F

++1
3,2 , F++2

3,2 }) = 2

5
,

so H contains F++2
3,2 , which we shall call F . Put

V (F ) = {a, b, c, d, e}, with E(F ) = {abc, abd, abe, cde, acd, bce}.

Observe that every pair of vertices in V (F ) has positive co-degree. Since δ+2 (H) ≥(
2
5
+ ε
)
n, there exists some vertex f that is in the neighborhood of at least five pairs

from V (F ). Let Gf be the link graph of vertex f induced on vertex set V (F ) (i.e. Gf =
L(f)[V (F )]).

Claim 4.4. The following statements hold:

(i) For every xyz ∈ E(H), at most two of xy, xz, yz are in E(Gf ).

(ii) There is no isolated vertex in Gf .

(iii) At most one of ad, cd is in E(Gf ) and at most one of be, ce is in E(Gf ).

(iv) At most one of cd, de is in E(Gf ) and at most one of ce, de is in E(Gf ).

(v) At most one of ab, ac is in E(Gf ) and at most one of ab, bc is in E(Gf ).

(vi) At most one of ab, ad is in E(Gf ) and at most one of ab, be is in E(Gf ).

(vii) At most one of ac, ad is in E(Gf ) and at most one of bc, be is in E(Gf ).

(viii) Gf is triangle-free.

Proof. To prove each statement, we shall assume that the statement does not hold and use
this assumption to find some forbidden structure in H. Notice that the two parts in each of
the statements (iii)–(vii) are symmetric so it is sufficient to prove only the first part of each
of those claims. Here the symmetry is coming from the fact that a → b, b → a, c → c, d →
e, e → d is an automorphism of F .

For (i), observe that if xyz ∈ E(H) and xy, xz, yz ∈ E(Gf ), then {x, y, z, f} spans a K3
4

in H.
For (ii), assume that Gf contains a vertex of degree 0. Then the other four vertices in

V (F ) span (at least) five edges of Gf , so Gf contains a K−
4 . As illustrated in Figure 3, a K−

4

in Gf implies that H contains F2 if the appropriate pair of vertices (x and y, in the
figure) has positive co-degree. Since all pairs of vertices in F have positive co-degree, a K−

4

in Gf indeed implies that H contains F2.

14



x z

w y

Gf

x
z

w
y

f

w
x

z
y

f

H

Figure 3: K−
4 in Gf and the resulting structure in H.

For (iii), observe that if ad, cd ∈ E(Gf ), then {a, c, d, f} spans K3−
4 with spike vertex d,

and {a, b, c, e} spans K3−
4 with spike vertex b, so {a, b, c, d, e, f} spans F1 (since d(e, f) > 0

by (ii)).
For (iv), if cd, de ∈ E(Gf ), then {c, d, e, f} spans K3−

4 with spike vertex d, and {a, b, c, e}
spans K3−

4 with spike vertex b, so {a, b, c, d, e, f} spans F1 (since d(a, f) > 0 by (ii)).
For (v), if ab, ac ∈ E(Gf ), then {a, b, c, d} and {a, b, c, f} span copies of K3−

4 with spike
vertex a, so {a, b, c, d, f} spans F2 (since d(d, f) > 0 by (ii)).

For (vi), if ab, ad ∈ E(Gf ), then {a, b, c, d} and {a, b, d, f} span copies of K3−
4 with spike

vertex a, so {a, b, c, d, f} spans F2 (since d(c, f) > 0 by (ii)).
For (vii), if ac, ad ∈ E(Gf ), then {a, b, c, d} and {a, c, d, f} span copies of K3−

4 with spike
vertex a, so {a, b, c, d, f} spans F2 (since d(b, f) > 0 by (ii)).

Finally, we show (viii). From (i), we know that {c, d, e} does not form a triangle in Gf ,
and from (v) and (vi) it follows that ab is not contained in a triangle in Gf . Thus, any
triangle in Gf must include one edge spanned by {c, d, e}, and two edges with one vertex in
{a, b} and the other in {c, d, e}. By (i), {a, c, d} does not span a triangle (nor does {b, c, e}).
Up to symmetry, there are two other potential triangles: {a, d, e}, and {a, c, e}. Observe
that if {a, d, e} spans a triangle in Gf , then {a, d, e, f} spans K3−

4 with spike vertex f , and
{a, b, c, e} spans K3−

4 with spike vertex b, so {a, b, c, d, e, f} spans F1 (since d(c, d) > 0).
Next, suppose {a, c, e} spans a triangle in Gf . By (iii), (iv), (v), and (vii), none of

be, de, ab, ad are in E(Gf ). Thus, two of bc, bd, cd are in E(Gf ). We shall show that this is
impossible. Observe that if bc ∈ E(Gf ), then {a, b, c, f} and {b, c, e, f} each spans a K3−

4

with spike vertex c, so {a, b, c, e, f} spans F2 (since d(a, e) > 0). Moreover, if cd ∈ E(Gf ),
then {a, c, d, f} and {c, d, e, f} span K3−

4 with spike vertex c, so {a, c, d, e, f} spans F2 (since
d(a, e) > 0). Thus, Gf is triangle-free.

With Claim 4.4 established, we are ready to determine the structure of Gf . By (i), at
most two out of five edges of Gf are spanned by {c, d, e}, so one of a, b has degree at least
2. Without loss of generality, d(a) ≥ d(b) and d(a) ≥ 2.

Observation 4.5. ab ̸∈ E(Gf ).

Proof. Suppose to the contrary that ab ∈ E(Gf ). By (v) and (vi), ac and ad are not in
E(Gf ), so we must have ae ∈ E(Gf ). By (v) and (vi), we also have bc, be ̸∈ E(Gf ). Since Gf
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has five edges, at least three of bd, cd, ce, de are in E(Gf ). By (iv), at most one of ce, de is
in E(Gf ), so bd, cd ∈ E(Gf ). Also by (iv), if cd ∈ E(Gf ), then de ̸∈ E(Gf ), so ce ∈ E(Gf ).
Since ae ∈ E(Gf ), there exists a vertex x not in V (F ) that is a common neighbor of a and e.
The set of edges {adb, dce, fab, fbd, fdc, fce, aex} forms F1. See Figure 4 for an illustration
of Gf , F , and F1.

ba

c ed

ba

c ed

Gf and F

a
d

f
e

b c

x

f
a

d
e

b c

F1

Figure 4: The configuration when ab ∈ E(Gf ), and the resulting copy of F1.

Since d(a) ≥ 2, two of ac, ad, ae are in E(Gf ). By (vii), at most one of ac, ad is in
E(Gf ), so E(Gf ) contains ae and exactly one of ac, ad. Suppose first that ad ∈ E(Gf ).
By (iii), cd ̸∈ E(Gf ), and by (viii), de ̸∈ E(Gf ). Since d(b) ≤ d(a) = 2, we must have
ce ∈ E(Gf ). Now, by (iii), be ̸∈ E(Gf ), so we must have bc, bd ∈ E(Gf ). Since ae ∈ E(Gf ),
there exists a vertex x not in V (F ) that is a common neighbor of a and e. The set of edges
{adb, bce, fad, fbd, fbc, fce, aex} forms F1. See Figure 5 for an illustration of Gf , F , and F1.

ba

c ed

ba

c ed

Gf and F

a
b

f
e

d c

x

f
a

b
e

d c

F1

Figure 5: The configuration when ad, ae ∈ E(Gf ), and the resulting copy of F1.

Thus, we have ac, ae ∈ E(Gf ) and ad ̸∈ E(Gf ). By (viii), ce ̸∈ E(Gf ), and by (iv),
at most one of cd, de is in E(Gf ). Thus, d(b) = 2. By (vii), at most one of bc, be is
in E(Gf ), hence bd ∈ E(Gf ). Suppose for a contradiction that be ∈ E(Gf ). Then by
(viii), de ̸∈ E(Gf ). Since Gf has at least 5 edges, dc ∈ E(Gf ). Since bd ∈ E(Gf ), there
exists a vertex x not in V (F ) that is a common neighbor of b and d. The set of edges
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{abe, adc, fbe, fae, fac, fcd, bdx} forms F1. See Figure 6 for an illustration of Gf , F , and
F1.

ab

c de c

Gf and F

b
a

f

d

e c

x

f

F1

Figure 6: The configuration when be ∈ E(Gf ), and the resulting copy of F1.

Thus, bc ∈ E(Gf ). By (viii), cd ̸∈ E(Gf ), so we must have de ∈ E(Gf ). Hence
E(Gf ) = {ae, ac, bc, bd, de}; see Figure 7 for an illustration.

ba

c ed

ba

c ed

Figure 7: F and Gf when ac, ae ∈ E(Gf ).

Unlike in the previous cases, we cannot immediately find F1 (or any other forbidden
hypergraph) in Figure 7. However, we now have that the subhypergraph of H induced on
{a, b, c, d, e, f} has edge set {abc, abd, abe, adc, bce, cde, fac, fcb, fbd, fde, fea}. We call this
subhypergraph F ′, and we shall use F ′ to find some forbidden hypergraph.

Observe first that each of the 15 pairs of vertices in F ′ have positive co-degree. Thus,
there exists some g ∈ V (H) that is in the neighborhood of at least 15

(
2
5
+ ε
)
> 6 pairs. Let

Gg be the link graph of vertex g induced on V (F ′) (i.e. Gg = L(g)[V (F ′)]). Again, we begin
with some observations on Gg.

Claim 4.6. δ(Gg) ≥ 1. Moreover, in Gg, N(f) = {c, d, e}.

Proof. As in the proof of Claim 4.4, since all pairs from {a, b, c, d, e, f} have positive co-
degree, Gg cannot contain K−

4 .
If Gg has an isolated vertex v, then Gg − v is a component on 5 vertices and 7 edges that

necessarily contains a K−
4 . Thus, every vertex of Gg has positive degree.
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Next, observe that the previous analysis of Gf in fact shows that if some vertex v ∈
V (H)\V (F ) has positive co-degree with at least 5 pairs from V (F ), then the link graph of v
induced on V (F ) must be equal to Gf . In particular, either Gg contains Gf or g has positive
co-degree with at most 4 pairs from V (F ). Observe that if Gg contains Gf , then {a, b, c, f}
and {a, b, c, g} span copies of K3−

4 with spike vertex c. This implies that {a, b, c, f, g} spans
F2, since we have argued that d(f, g) > 0. Thus, g has positive co-degree with at most 4
pairs from V (F ), which implies that f has degree at least 3 in Gg, since |E(Gg)| ≥ 7.

Finally, to determine N(f) in Gg, we consider the interaction between Gg and Gf . Sup-
pose that x, y are neighbors of f in Gg such that xy ∈ E(Gf ). Then {x, y, f, g} forms K3−

4

with spike vertex f . We consider the possible values of x, y; we know xy ∈ {ac, ae, bc, bd, de}.
Since {a, b, c, d} spans K3−

4 with spike vertex a, and we have established that g has positive
co-degree with every vertex in V (F ), we can find F1 in H on vertex set {a, b, c, d, f, g} if
xy ∈ {bc, bd}. Similarly, if xy ∈ {ac, ae}, then we can find F1 on {a, b, c, e, f, g}. Thus, in
Gg, either N(f) is an independent set or N(f) contains precisely the edge de. Recall that
|N(f)| ≥ 3, so the first outcome is impossible, as the independence number of Gf is 2. The
second outcome occurs only if N(f) = {c, d, e}.

With Claim 4.6 established, we conclude that |E(Gg)| = 7, with exactly 4 edges of Gg

spanned by {a, b, c, d, e}. Given that cf, df, ef ∈ E(Gg), we shall prove that this is not
possible.

First, observe that none of cd, ce, de are in E(Gg). Indeed, if de ∈ E(Gg), then {d, e, f, g}
spans K3

4 (recall that de ∈ E(Gf )). If either cd or ce is in E(Gg), then either {c, d, f, g} or
{c, e, f, g} spans K3−

4 with spike vertex g; if {c, d, f, g} spans K3−
4 , then {a, b, c, d, f, g} spans

an F1, while if {c, e, f, g} spans K3−
4 , then {a, b, c, e, f, g} spans an F1.

Notice that Claim 4.4 applies also to Gg since Claim 4.6 proves (ii) and it is the only
statement that used the number of edges of Gf . Next, we prove that ab ̸∈ E(Gg). Indeed,
by (v) and (vi), if ab ∈ E(Gg), then ac, bc, ad, be are not in E(Gg). Recall cd, ce, de are not
in E(Gg). So if ab ∈ E(Gg), then at most three edges of Gg are spanned by {a, b, c, d, e}.
However, by Claim 4.6, d(f) = 3 in Gg, so we have |E(Gg)| ≤ 6, a contradiction. Thus,
ab ̸∈ E(Gg).

Finally, by (vii), at most two of ac, ad, bc, be are in E(Gg). So in order to have |E(Gg)| = 7,
both ae and bd must be in E(Gg). However, this results in F1 on {a, b, d, e, g, f} with edges
{age, afe, abc, gfe, gfd, gbd, bdf} as depicted in Figure 8.

5 Positive co-degree densities from flag algebras

This section contains calculations using flag algebras, as introduced by Razborov [39]. For
an introduction to flag algebras and formal definitions, see [18, 19, 39]. Computer code is
available at https://lidicky.name/pub/pco/.

We use flag algebras to prove Theorem 2.4 that γ+(J4) = 4/7, with the asymptotically
unique construction being the balanced blow-up of the complement of the Fano plane. In
Figure 9, we illustrate (a blow-up of) the Fano plane, with a particular labeling of classes
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ba

c ed

f

ba

c ed

f

a
g

f

b

e d

c

f
a

g b

e d

Figure 8: F ′ (edges involving f indicated by Gf in thick blue) and a configuration in Gg (in
dashed green) yielding F1.

to which we will later refer. We denote the complement of the Fano plane by F and the
n-vertex, balanced blow-up of the complement of the Fano plane by Fn.

X1 X2

X6

X7

X3

X4

X5

Figure 9: A blow-up of the Fano plane. In Fn, 3-edges span triples of classes which do not
span 3-edges in the blow-up of F.

Let F be the family of thirteen 3-graphs 6-vertex induced subgraphs of Fn, depicted
in Figure 10. We include labels to indicate which classes of Fn each vertex belongs to,
corresponding to the labeling in Figure 9. Note that due to the symmetries of Fn, the
indicated labelings are not the unique ways a subgraph can be obtained.

Let F6 be the family of J4-free 6-vertex 3-graphs.
The following claim shows that if a J4-free n-vertex 3-graph G has minimum positive

co-degree at least 4
7
n then every 3-graph on six vertices with positive density in G is in F .
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F1

X1 X2 X3 X4 X4 X7
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 3 5
2 4 6
2 5 6

3 4 6
3 5 6

F2

X1 X2 X3 X4 X4 X3
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

2 3 4
2 3 5
2 4 6
2 5 6

F3

X1 X2 X3 X4 X7 X7
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 4 5
2 4 6

3 4 5
3 4 6

F4

X1 X2 X3 X4 X7 X6
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

2 3 4
2 3 6
2 4 5
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

F5

X1 X2 X3 X4 X4 X4
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 3 5
2 3 6

F6

X1 X2 X3 X7 X7 X7
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

F7

X1 X2 X3 X7 X7 X6
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

F8

X1 X2 X3 X7 X7 X1
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 6
2 4 6
2 5 6

3 4 6
3 5 6

F9

X1 X2 X3 X3 X1 X1
1 2 3
1 2 4
1 3 4

2 3 5
2 3 6
2 4 5
2 4 6

3 4 5
3 4 6

F10

X1 X2 X3 X3 X3 X3
1 2 3
1 2 4
1 2 5
1 2 6

F11

X1 X2 X3 X3 X3 X2
1 2 3
1 2 4
1 2 5
1 3 6
1 4 6
1 5 6

F12

X1 X2 X3 X3 X2 X1
1 2 3
1 2 4
1 3 5
1 4 5

2 3 6
2 4 6

3 5 6
4 5 6

F13

X1 X1 X1 X1 X1 X2

Figure 10: The family F of thirteen 6-vertex 3-graphs.

Claim 5.1. For every fixed δ > 0, there exists n0 such that for every n ≥ n0, if Gn is a
J4-free n-vertex 3-graph with δ+2 (Gn) ≥ 4n

7
, then∑

H∈F6\F

d(H,Gn) ≤ δ.

Proof. The claim is proved by a standard application of flag algebras. The notable part is
encoding the condition δ+2 (Gn) ≥ 4n

7
into flag algebras by (5.1).

0 ≤ 1 2
1 2 3

×

(
7 1 2

1 2 3
− 4 1 2

)
. (5.1)

If two labeled vertices 1 and 2 have zero co-degree, the right-hand side of (5.1) is zero because
of the first term. If they have positive co-degree, both terms in the product are non-negative.

The calculation is computer-assisted and too large to fit in this paper. The details are
available at https://lidicky.name/pub/pco/.

In the proof of Theorem 2.4 we will use an induced removal lemma.

Theorem 5.2 (Induced Removal Lemma, [1,40]). Let r, C ∈ Z and ε > 0 be fixed. For every
family of r-graphs F on at most C vertices, there exists δ > 0 such that every sufficiently
large n, every r-graph on n vertices, which contains at most δn|V (F )| induced copies of F for
every F ∈ F , can be made induced F-free by adding and/or deleting at most εnr hyperedges.

20

https://lidicky.name/pub/pco/


Claim 5.1 together with Theorem 5.2 forces 3-graphs with positive co-degree at least 4
7
n

to be highly structured, which is the core of the proof of Theorem 2.4.

Proof of Theorem 2.4. Recall that Fn is the blow-up of the complement of the Fano plane
(see Figure 9) on vertices x1, . . . , x7, where each vertex xi is blown-up to n

7
vertices into the

set Xi. Let x ∈ Xi and y ∈ Xj for some i, j ∈ [7]. If i = j then d(x, y) = 0. If i ̸= j then
d(x, y) = 4

7
n. As J4 ̸⊆ Fn, co

+ex(n, J4) ≥ 4
7
n+ o(n), which implies γ+(J4) ≥ 4/7.

Next, we show that γ+(J4) ≤ 4/7. Fix β > 0 and ε > 0 small enough such that

24ε1/4 < 1
12

(
4
7

)3 ≈ 0.015 and 48ε1/4 < β. We shall fix n sufficiently large such that Claim 5.1
and Theorem 5.2 imply that every J4-free, n-vertex 3-graph G has a subgraph G′ at edit
distance at most εn3 from G such that every 6-vertex induced subgraph of G′ is in F . We
will also take n sufficiently large that Lemma 3.3 may be applied with c = 4

7
and any n-

vertex 3-graph H with δ+2 (H) ≥
(
4
7
− 48ε1/4

)
n contains a K3

4 . This last condition is possible

because γ+(K3
4) ≤ 0.543 (see Table 1), and 0.543 < 4

7
− 48ε1/4 by the choice of ε.

Fix an n-vertex J4-free 3-graph Gn with δ+2 (Gn) ≥ 4
7
n. Our goal is to show that δ+2 (Gn) <(

4
7
+ β

)
n, which will establish γ+(J4) ≤ 4

7
. The proof will also imply that in fact, the

balanced blow-up of the complement of the Fano plane is the asymptotically unique extremal
construction.

By Lemma 3.3 and the choice of ε, Gn contains more than 24ε1/4n3 hyperedges. We
can thus apply Lemma 3.2 to conclude that G′

n contains an n-vertex subgraph G′′
n with

δ+2 (G
′′
n) ≥

(
4
7
− 48ε1/4

)
n. Since G′

n may not be a subgraph of Gn, we apply Lemma 3.2 to
the subgraph ofG′

n obtained by deleting any 3-edges that were added toGn by the application
of Theorem 5.2. Thus, G′′

n contains K3
4 , say on vertices v1, v2, v3, v4. Hence {v1, v2, v3, v4}

also spans K3
4 in G′

n. A search through F shows that there are only two possible subgraphs
on 5 vertices containing K3

4 , which we label A and B below.

A :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 3 5

B :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 4 5

3 4 5

We now partition V (G′
n) into 7 sets X1, . . . , X7 as follows. Put vi ∈ Xi for i ∈ [4]. For

v ∈ V (G′
n) \ {v1, v2, v3, v4}, define Gv := Gn[v1, v2, v3, v4, v]. If Gv is isomorphic to A then

put v ∈ Xi where dGv(v, vi) = 0 for some vi. If Gv is isomorphic to B then put v ∈ X5 if
v1v2v, v3v4v ̸∈ E(Gv) or v ∈ X6 if v1v3v, v2v4v ̸∈ E(Gv) or v ∈ X7 if v1v4v, v2v3v ̸∈ E(Gv).
This addresses every vertex v, so we have a partition of V (G′

n) into X1, . . . , X7. This labeling
matches that in Figure 9.

Now, we show that G′
n is in fact a blow-up of the complement of the Fano plane with

classes X1, . . . , X7.

Claim 5.3. G′
n satisfies the following conditions.

(i) For every i ∈ [7], no edge of G′
n intersects Xi in more than one vertex.

(ii) If a ∈ Xi, b ∈ Xj, c ∈ Xk for classes Xi, Xj, Xk which correspond to an edge of the
Fano plane as labeled in Figure 9, then abc ̸∈ E(G′

n).
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(iii) If a ∈ Xi, b ∈ Xj, c ∈ Xk for distinct classes Xi, Xj, Xk which do not correspond to
an edge of the Fano plane as labeled in Figure 9, then abc ∈ E(G′

n).
In particular, G′

n is a blow-up of the complement of the Fano plane.

Proof. We prove conditions (i), (ii), and (iii) one by one; in each case, we will argue that
if the condition is not satisfied, then G′

n must contain some subgraph that is not in F .
Throughout, refer to Figure 10 for the labeled members of F . We implemented this check
by a computer to reduce the number of cases needed to be done by hand.

For (i), suppose for a contradiction that there exists an edge abc such that a, b are in
the same class of G′

n. First note that by the definition of X1, . . . , X7, if abc either intersects⋃4
i=1Xi in at most two vertices or abc is contained in Xi for some i ∈ [4], then there

exists {i, j, k} ⊂ [4] such that two of N(xixj), N(xixk), and N(xjxk) contain a, b, c. Up to
symmetry, we may assume a, b, c ∈ N(x1x2) and N(x1x3). The the set of edges of an induced
subgraph H of G′

n on {x1, x2, x3, a, b, c} includes

E = {x1x2x3, x1x2a, x1x2b, x1x2c, x1x3a, x1x3b, x1x3c, abc}.

Since no graph of F contains a subset of edges isomorphic to E, we have H ̸∈ F , a contra-
diction. We use an analogous claim repeatedly. We use computer for verification as well as
arguments by hand.

Thus, if edge abc exists, we must have a, b ∈ Xi and c ∈ Xj for some i ̸= j with i, j ∈ [4].
Note that at most one of a, b, c is in {x1, x2, x3, x4}, since by the definition of the classes, no
edge containing xi and xj for {i, j} ∈ [4] intersects Xi or Xj. We have (up to symmetry of
the classes) two cases.

Case 1: a, b ∈ X3, c ∈ X4, and x3 ̸∈ {a, b}. Define H = G′
n[x1, x2, x3, a, b, c]. The set of

edges of H includes

E = {x1x2x3, x1x2a, x1x2b, x1x2c, x1x3c, abc}

and avoids edges N = {x1x3a, x1x3b, x2x3a, x2x3b}. Since no graph in F contains a subset
of edges isomorphic to E and avoids N , we have H ̸∈ F , a contradiction.

Case 2: a = x3, b ∈ X3, and c ∈ X4. Consider the subgraph H of G′
n induced on

{x1, x2, x3, x4, b, c}. The set of edges of H includes

E = {x1x2x3, x1x2x4, x1x3x4, x2x3x4, x1x2b, x1x4b, x2x4b, x1x2c, x1x3c, x2x3c, abc}.

Since no graph in F contains a subset of edges isomorphic to E, we have H ̸∈ F , a contra-
diction.

For (ii), suppose for a contradiction that there exists an edge abc spanning three classes
that correspond to an edge in Figure 9. Up to symmetry, there are two cases.

Case 1: The edge abc intersects
⋃4

i=1Xi in two vertices. Without loss of generality,
a ∈ X1, b ∈ X4, and c ∈ X7. Observe that we cannot have both a = x1 and b = x4 as
otherwise c ̸∈ X7 by definition of the classes, N(x1, x4) is disjoint from X7. Without loss of

22



generality, b ̸= x4. We consider the subgraph H of G′
n induced on {x2, x3, x4, a, b, c}. The

set of edges of H includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x2x3b, x2x4c, x3x4c, abc}

and avoids edges containing both x4 and b. Since no graph in F contains a subset of
edges isomorphic to E while avoiding edges containing both x4 and b, we have H ̸∈ F , a
contradiction.

Case 2: The edge abc does not intersect
⋃4

i=1 Xi. Without loss of generality, a ∈ X5, b ∈
X6, and c ∈ X7. We define the subgraph H of G′

n induced on {x1, x2, x3, a, b, c}. The set of
edges of H includes

E = {x1x2x3, x1x2b, x1x2c, x1x3a, x1x3c, x2x3a, x2x3b, abc}

and avoids edges N = {x1x2a, x2x3c, x1x3b}. Since no graph in F contains a subset of edges
isomorphic to E while avoiding N we have H ̸∈ F , a contradiction.

Finally, for (iii), suppose for a contradiction that there exist vertices a ∈ Xi, b ∈ Xj, c ∈
Xk such that Xi, Xj, Xk do not correspond to an edge in Figure 9 and abc ̸∈ E(G′

n). Up to
symmetry of classes, there are three cases.

Case 1: We have i, j, k ∈ [4]. Without loss of generality, a ∈ X1, b ∈ X2, and c ∈ X3. By
the definition of X1, X2, X3, note that at most one of a, b, c is in {x1, x2, x3}. Without loss of
generality, b ̸= x2 and c ̸= x3. We define the subgraph H of G′

n induced on {x2, x3, x4, a, b, c}.
The set of edges of H includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x3x4b, x2x4c}

and avoids edges N = {abc, x2x3b, x2x4b, x2x3c, x3x4c}. Since, no graph of F contains a
subset of edges isomorphic to E while avoiding edges in N , H ̸∈ F , a contradiction.

Case 2: Precisely two of i, j, k are in [4]. Without loss of generality, a ∈ X1, b ∈ X2, and
c ∈ X6. Observe that by the definition of X6, at most one of a, b is in {x1, x2}; without loss
of generality, b ̸= x2. We define the subgraph H of G′

n induced on {x2, x3, x4, a, b, c}. The
set of edges of H includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x3x4b, x2x3c, x3x4c}

and avoids edges N = {abc, x2x3b, x2x4b, x2x4c}. Since no graph in F contains a subset of
edges isomorphic to E while avoiding edges in N , we have H ̸∈ F , a contradiction.

Case 3: Exactly one of i, j, k is in [4]. Without loss of generality, a ∈ X1, b ∈ X5, and
c ∈ X6.

We define the subgraph H of G′
n induced on {x2, x3, x4, a, b, c}. The set of edges of H

includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x2x3b, x2x4b, x3x4b, x2x3c, x3x4c}

and avoids edges N = {abc, x2x4c, x3x4b}. Since, no graph of F contains a subset of edges
isomorphic to E while avoiding edges in N , H ̸∈ F , a contradiction.

We conclude that all conditions (i), (ii), and (iii) hold, i.e., G′
n is a blow-up of F.
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Finally, we show that G′
n is almost balanced. Recall that G′

n contains a subgraph G′′
n

with δ+2 (G
′′
n) ≥ (4

7
− 48ε1/4)n. Fix α ≥ 0 so that a largest class in G′

n has size at least(
1
7
+ α

)
n. Without loss of generality, X1 is a largest class. We bound the co-degree in G′′

n

of pairs containing vertices in X1. Observe that there are three sets of classes disjoint from
X1 that appear as neighborhoods of vertex pairs in G′′

n. Namely,

N(x1, x2) ⊆ X3 ∪X4 ∪X6 ∪X7;

N(x1, x3) ⊆ X2 ∪X4 ∪X5 ∪X7;

N(x1, x4) ⊆ X2 ∪X3 ∪X5 ∪X6.

Thus, in G′′
n, we have

d(x1, x2) + d(x1, x3) + d(x1, x4) ≤
7∑

i=2

2|Xi| ≤
(
12

7
− 2α

)
n.

By averaging, one of d(x1, x2), d(x1, x3), d(x1, x4) is at most
(
4
7
− 2α

3

)
n. Thus, δ+2 (G

′′
n) ≤ 4n

7
,

a contradiction if δ+2 (Gn) ≥
(
4
7
+ β

)
n. We conclude that γ+(J4) ≤ 4

7
. To see that G′′

n

should be approximately balanced, note that by the minimum positive co-degree condition
on G′′

n, we thus must have 2α
3

≤ 48ε1/4, i.e., G′′
n (and G′

n) contains no class of size larger
than

(
1
7
+ 72ε1/4

)
n. This upper bound implies that G′

n contains no class of size smaller than(
1
7
− 432ε1/4

)
n.

We determine the positive co-degree density and the asymptotically unique extremal
construction for F4,2. Since the proof is analogous to (but simpler than) the proof of Theo-
rem 2.4, we only include a sketch.

Sketch of the proof of Theorem 2.4. Observe first that F4,2 is 6-partite, so it is not contained
in the balanced blow-up of K3

5 , which implies γ+(F4,2) ≥ 3
5
. We now show that γ+(F4,2) ≤ 3

5
.

Let F be the family of seven 6-vertex 3-graphs depicted in Figure 11.
Observe that F consists of the empty 3-graph and the 6-vertex blow-ups of K3

3 , K
4
3 , and

K3
5 . Thus, F is exactly the set of 6-vertex induced subgraphs of the balanced blow-up of

K3
5 .
Using flag algebras, we show that for sufficiently large n, if Gn is a F4,2-free n-vertex 3-

graph with δ+2 (Gn) ≥ 3n
5
, then the 6-vertex 3-graphs with positive density inGn are in F . The

details of the calculations by computer are available at https://lidicky.name/pub/pco/.
Using the induced removal lemma (Theorem 5.2), Gn has a small edit distance to G′

n, where
every 6-vertex subgraph vertices belongs to F .

Recall that γ+(K3
4) ≤ 0.543 < 3

5
, so by Lemma 3.2, G′

n contains a subgraph with mini-
mum positive co-degree larger than (0.543 + ε)n for some ε > 0. Thus, we can assume G′

n

contains K3
4 , say on vertices v1, v2, v3, v4. A search through F shows that there are only two
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X1 X2 X3 X4 X5 X5
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6

3 4 5
3 4 6

X1 X2 X3 X4 X4 X4
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 3 5
2 3 6

X1 X2 X3 X3 X4 X4
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

2 3 4
2 3 5
2 4 6
2 5 6

X1 X1 X2 X2 X3 X3
1 2 3
1 2 4
1 3 5
1 4 5

2 3 6
2 4 6

3 5 6
4 5 6

X1 X2 X3 X3 X3 X3
1 2 3
1 2 4
1 2 5
1 2 6

X1 X2 X2 X3 X3 X3
1 2 3
1 2 4
1 2 5
1 3 6
1 4 6
1 5 6

X1 X1 X1 X2 X2 X2

Figure 11: The family F of seven 6-vertex 3-graphs.

possible subgraphs on 5 vertices containing K3
4 .

A :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 3 5

B :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 4 5

3 4 5
2 3 5

1 4 5

Note that A is the (unique) 5-vertex blow-up of K3
4 and B = K3

5 . We now partition V (G′
n)

into five sets X1, . . . , X5 as follows. Put vi ∈ Xi for i ∈ [4]. For v ∈ V (G′
n) \ {v1, v2, v3, v4},

define Gv := Gn[v1, v2, v3, v4, v]. If Gv is isomorphic to A, then put v ∈ Xi, where dGv(v, vi) =
0. If Gv is isomorphic to B, then put v ∈ X5.

An inspection of cases establishes the following claim.

Claim 5.4. G′
n satisfies the following conditions.

(i) For every i ∈ [5], no edge of G′
n intersects Xi in more than one vertex.

(ii) For every a ∈ Xi, b ∈ Xj, and c ∈ Xk with i, j, k pairwise distinct, abc ∈ E(G′
n).

In particular, G′
n is a blow-up of K3

5 . From here, the positive co-degree condition can be
used to establish that the vertex-partition of G′

n is essentially balanced.

Finally, Theorem 2.6 was proved using flag algebras. The certificates for the proofs are
available at https://lidicky.name/pub/pco/. These bounds are unlikely to be tight.

6 Concluding remarks

While we significantly expand the known sets of jumps and achievable values for γ+, the
general behavior of γ+ remains mysterious, even for r = 3. It is unclear whether γ+ has
a jump everywhere, though we conjecture that more jumps exist than are characterized in
Theorem 2.1.
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Question 1. For r ≥ 3, which values of α ∈ [ 2
2r−1

, 1] are γ+-jumps? Does there exist an

α ∈ [ 2
2r−1

, 1] which is not a γ+-jump?

Many more concrete questions could be asked when r = 3. For example, it is unclear,
how far Theorem 2.2 is from completely characterizing achievable densities in the range [0, 1

2
]

when r = 3.

Question 2. Are there achievable values of γ+ in [2
5
, 1
2
] that are not of the form k−2

2k−3
, when

r = 3?

A negative answer to Question 2 would suggest some similarity between γ+ and π, since
the extremal constructions in Theorem 2.2 are a fairly natural analogue of Turán graphs.
However, note that there is no hope for an Erdős-Stone-Simonovits-type result giving values
of γ+. Indeed, since a balanced blow-up ofK3

4 has positive co-degree density 1
2
, every 3-graph

F with 0 < γ+(F ) < 1
2
is 4-partite.

To begin addressing either Question 1 or 2, it seems natural to start with the next interval
between known achievable values. Even this next case seems difficult.

Question 3. For r = 3, is every α ∈ [2
5
, 3
7
) a γ+-jump? Is there a family F with γ+(F) ∈(

2
5
, 3
7

)
?

The use of flag algebras introduces the potential for new approaches to positive co-degree
questions, particularly when combined with proving the existence of γ+-jumps. As illustrated
by Theorems 2.4 and 2.5, flag algebra calculations have the potential to directly determine
values of γ+, and even inexact bounds (e.g., γ+(K3

4) ≤ 0.543) given by flag algebras are
sometimes substantially better and more useful than what seems tractable by hand. When
combined with known jumps of the function γ+, flag algebra bounds also have the potential to
produce exact results. For instance, any 3-graph F that can be shown via a flag calculation
to have γ+(F ) < 2

5
must have γ+(F ) ∈

{
0, 1

3

}
. Thus, obtaining estimates via flags and

“rounding down” via known jumps is a very efficient way to determine the densities of many
small 3-graphs. Since we can directly characterize those 3-graphs with positive co-degree
density in

{
0, 1

3

}
, it is now also possible to directly determine by inspection whether a fixed

3-graph F has γ+(F ) ∈
{
0, 1

3

}
; however, it seems unlikely that the set

F(r, d) := {F an r-graph : γ+(F ) = d}

can be as simply characterized for other values of d, even when r = 3. We are interested
to see whether further understanding of jumps will include characterizations of this type. If
they do not, the potential combination of estimated densities with the theory of jumps is an
appealing approach to determining densities exactly.

It is also open whether every achievable value of γ+ can be achieved as the density of
a single r-graph. Theorem 2.3 shows that 2

5
is achievable by a single 3-graph, as is every

achievable density known outside the interval
(
2
5
, 1
2

)
.

Question 4. For a fixed k ≥ 5, is there a 3-graph Fk such that γ+(Fk) = k−2
2k−3

? More
generally, if F is a family of r-graphs with γ+(F) = α, does there always exist a single
r-graph F with γ+(F ) = α?
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Every 3-graph that is not the subgraph of a (blow-up of a) suspension will have positive
co-degree density at least 1

2
. The complete list of known achievable densities at least 1

2
is as

follows: 1
2
(achieved by F3,2),

4
7
(achieved by J4),

3
5
(achieved by F4,2), and

2
3
(achieved by

the Fano plane).

Question 5. For r = 3, find other achievable values for γ+ larger than 1
2
. Is there an

α ∈
[
1
2
, 1
)
which is a γ+-jump? Is there an α ∈

[
1
2
, 1
)
for which we can characterize the

3-graphs with γ+(F ) = α?

Very little is known about the γ+ function for r-graphs when r ≥ 4. A natural starting
point would be to study extensions of 3-graphs whose positive co-degree densities are known.
For example, the r-daisy Dr is the 6-edge r-graph on r+2 vertices whose all six edges contain
the same r − 2 vertices and each pair of the remaining 4 vertices is in one edge. There was
a recent breakthrough on the Turán density of r-daisies [14]. Note that J4 is the 3-daisy.

Question 6. What is γ+(Dr) for r ≥ 4?
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[16] P. Erdős and A. H. Stone. On the structure of linear graphs. Bull. Amer. Math. Soc.,
52:1087–1091, 1946. doi:10.1090/S0002-9904-1946-08715-7.

[17] V. Falgas-Ravry, E. Marchant, O. Pikhurko, and E. R. Vaughan. The codegree threshold
for 3-graphs with independent neighborhoods. SIAM J. Discrete Math., 29(3):1504–
1539, 2015. doi:10.1137/130926997.

[18] V. Falgas-Ravry, O. Pikhurko, E. Vaughan, and J. Volec. The codegree threshold of
K−

4 . J. Lond. Math. Soc. (2), 107(5):1660–1691, 2023. doi:10.1112/jlms.12722.

[19] V. Falgas-Ravry and E. R. Vaughan. Applications of the semi-definite method to
the Turán density problem for 3-graphs. Combinatorics, Probability and Computing,
22(1):21–54, 2013. doi:10.1017/S0963548312000508.

28

https://doi.org/10.1137/20M1336989
https://doi.org/10.1137/20M1336989
https://doi.org/10.1007/s00493-024-00099-y
https://doi.org/10.1016/0012-365X(74)90105-8
https://doi.org/10.1017/S0963548311000319
https://doi.org/10.1006/jctb.1999.1938
https://doi.org/10.1006/jctb.1999.1938
http://arxiv.org/abs/2312.02879
https://doi.org/10.1112/blms.13171
https://doi.org/10.1090/S0002-9904-1946-08715-7
https://doi.org/10.1137/130926997
https://doi.org/10.1112/jlms.12722
https://doi.org/10.1017/S0963548312000508
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[29] B. Lidický, C. Mattes, and F. Pfender. The hypergraph Turán densities of tight cycles
minus an edge, 2024. arXiv:2409.14257.

[30] J. Ma. On codegree Turán density of the 3-uniform tight cycle C11, 2024. arXiv:

2409.02765.

[31] D. Mubayi. The co-degree density of the Fano plane. J. Combin. Theory Ser. B,
95(2):333–337, 2005. doi:10.1016/j.jctb.2005.06.001.
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