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Abstract

A (ky, k2)-outdegree-splitting of a digraph D is a partition (V7, V) of its vertex set such that D[V]]
and D[V5] have minimum outdegree at least k; and ko, respectively. We show that there exists a mini-
mum function f7 such that every tournament of minimum outdegree at least f7(k1, ko) has a (k1, k2)-
outdegree-splitting, and fr(ky, k2) < k3 /2+3k1/2+ko+1. We also show a polynomial-time algorithm
that finds a (k1, k2)-outdegree-splitting of a tournament if one exists, and returns ‘no’ otherwise. We give
better bound on fr and faster algorithms when k1 = 1.

1 Introduction

Let D be a digraph. For a vertex v € V(D) the outdegree of v, denoted by dB(fu), is the number of arcs
directed away from v. The minimum outdegree over all vertices of D is denoted by 67 (D). We drop D in
df(v) and §7(D) if it is clear from the context.

A (K1, ka)-outdegree-splitting of a digraph D is a partition (V7, V) of its vertex set such that D[V;] and
DIV5] have minimum outdegree at least k; and ko, respectively. A digraph admitting a (k1, k2)-outdegree-
splitting is said to be (k1, k2)-outdegree-splittable.

Problem 1 (Alon [1]]). Is there a function f such that every digraph with minimum outdegree f(k1, k2) has
a (k1, k2)-outdegree-splitting?

The existence of the corresponding function f for the undirected analogue is easy and has been observed
by many authors. Stiebitz [[12] even proved the following tight result: if the minimum degree of an undi-
rected graph G is d; + d2 + - - - + di, where each d; is a non-negative integer, then the vertex set of G
can be partitioned into k pairwise disjoint sets V1, ..., Vj, so that for all ¢, the induced subgraph on V; has
minimum degree at least d;. This is clearly tight, as shown by an appropriate complete graph.

Problem I]is equivalent to the following:

Problem 2. Ts there a function f’(k1, ko) such that every digraph with minimum outdegree f’(k1, ko) has
two disjoint (induced) subdigraphs, one of them with minimum outdegree k; and the other with minimum
outdegree ko?
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This follows from the following proposition.

Proposition 3. Let D be a digraph with minimum outdegree at least k1 + ko — 1. If D contains two disjoint
subdigraphs D1 and Do such that 5% (D1) = ki and §7(Dy) = ko, then D has a (k1, ko)-outdegree-
splitting.

Proof. Consider two disjoint digraphs Dy and Do with 51 (D7) = k; and 51 (D2) = ks such that V(D) U
V(D3) is maximum. Suppose for a contradiction that S = V(D) \ (V(D;) U V(D3)) is not empty. Then
every vertex s € S has at most k; — 1 outneighbours in D; otherwise D; + s and Dy contradict the
maximality of Dy and Ds. Hence every vertex of S has at least k1 + ko — 1 — (k1 — 1) = k2 outneighbours
in D — D;. It follows that D — D has minimum degree k3. So D and D — D; contradicts the maximality
of Dy and Ds. ]

Corollary 4. f(k‘l, ]4}2) < max{f’(kl, ]4}2), ki+ ko — 1}.

This implies in particular that f(1,1) = f’(1,1) = 3. Indeed Thomassen [13] showed that every
digraph of minimum outdegree at least 3 has two disjoint cycles. (In this paper, paths and cycles are always
directed.)

This is a special case of Bermond-Thomassen Conjecture [3]]:

Conjecture 5 (Bermond and Thomassen [3]). Every digraph with 57 > 2k — 1 contains k disjoint cycles.

Note that Alon [[I]] proved that if 5+ > 64k there are k disjoint cycles.

A tournament is a digraph such that for every two distinct vertices u, v there is exactly one arc with ends
{u, v} (so, either the arc uv or the arc vu but not both).
In this paper, we settle Problem |1|for tournaments.

Theorem 6. Every tournament of minimum outdegree at least k3/2 + 3k1/2 + ko + 1 has a (ki, k2)-
outdegree-splitting.

To prove Theorem|[6] we shall prove the following theorem.

Theorem 7. Every tournament with minimum outdegree at least k has a subtournament with minimum
outdegree k and order at most k? /2 + 3k /2 + 1.

We can then easily derive Theorem [6]

Proof of Theorem[6] Let T be a tournament of minimum outdegree at least k?/2 + 3k1/2 + ko + 1. By
Theorem [/ there exists a subtournament 77 with minimum outdegree at least k; and order at most k% /2 +
3k1/2 + 1. Let To, = T — Ty. Then §*(T2) > 6(T) — |V(T1)| > ko. Hence (V(T1),V(T2)) is a
(k1, k2)-outdegree-splitting. O

In fact, we prove a more general statement than Theorem [7] (Theorem [I7). This enables us to prove the
following generalization of Theorem [6]

Theorem 8. Let m = max{k?/2 + 3k1/2 + ko + u1 + 1,k1 + ua}, let T be a tournament of minimum
outdegree at least m and let Uy and Us be two disjoints subsets of V (T') of cardinality uy and ug respectively.
Then there is a (k1, ka)-outdegree-splitting (V1,Va) of T such that Uy C Vi and Uy C V.

The bound of Theorem [6]is certainly not tight. Theorem [6] asserts that every tournament with minimum
outdegree 4 has a (1, 1)-outdegree-splitting, but we know that having outdegree 3 is sufficient.



Problem 9. What is the minimum integer fr(k1, k2) such that every tournament with minimum outdegree
at least f7(kq, ko) has a (k1, k2)-outdegree-splitting?

Theorem [6] implies that fr(1, k) < k + 3. We describe examples implying fr(1,k) > k + 2, and we
conjecture that this lower bound is the exact value.

Conjecture 10. For any positive integer k, fr(1,k) =k + 2.
In Section[4] we establish this conjecture for k € {2, 3,4}, that is, we prove fr(1,2) =4, fr(1,3) =5,
and fr(1,4) = 6.

Next we consider problems of deciding whether a digraph admits a (k1, ko) —outdegree-splitting.
OUTDEGREE SPLITTING
Input: A digraph D and two positive integers k1 and k».
Question: Does D admit a (&1, k2)-outdegree-splitting?

Particular cases of this problem are when k1 and %y are fixed integers and not part of the input. Hence
for every fixed k1, ko, we have the following problem.
(K1, k2)-OUTDEGREE-SPLITTING
Input: A digraph D.
Question: Does D admit a (k;, k2)-outdegree-splitting?

Theorem 11. (1,1)-OUTDEGREE-SPLITTING is polynomial-time solvable.

Proof. Let us describe a polynomial-time algorithm solving (1,1)-OUTDEGREE SPLITTING.

If the input digraph D has a vertex with outdegree 0, then the answer is ‘no’ because this vertex has
outdegree 0 in any subdigraph of D containing it. Henceforth we may assume that 6 (D) > 1.

It is well-known that a digraph with outdegree at least 1 contains a cycle. Therefore, Proposition
implies that a digraph with minimum outdegree at least 1 admits a (1, 1)-outdegree-splitting if and only if it
contains two disjoint cycles. Thus it is enough to decide whether D contains two disjoint cycles.

But deciding whether a digraph contains two disjoint cycles can be done in polynomial time as shown
by McCuaig [7]]. (See also [9].) L]

In Section [5] we consider the restriction of these problems to tournaments.
TOURNAMENT OUTDEGREE-SPLITTING
Input: A tournament 7" and two positive integers k; and k.
Question: Does 7" admit a (k1, k2)-outdegree-splitting?

TOURNAMENT (k1, k2)-OUTDEGREE-SPLITTING
Input: A tournament 7'.
Question: Does 7" admit a (k1, k2)-outdegree-splitting?

TOURNAMENT (1, 1)-OUTDEGREE-SPLITTING is a particular case of (1, 1)-OUTDEGREE-SPLITTING,
and thus is polynomial-time solvable. In Theorem [31} we show that, more generally, for any k1, k2, TOUR-
NAMENT (k1, k)-OUTDEGREE-SPLITTING can be solved in O(n¥*/2+3%/2+3) time. We then describe a
faster algorithm solving TOURNAMENT (1, k2)-OUTDEGREE-SPLITTING. It runs in O(n?) time for ky > 2
and in O(n?) time for ko = 1. In view of these results, it is natural to ask the following.



Problem 12. Is TOURNAMENT OUTDEGREE-SPLITTING fixed-parameter tractable with (k1, k2) as a pa-
rameter? In other words, can we solve TOURNAMENT OUTDEGREE SPLITTING in F'(kq, ko) P(n) time,
where F' is an arbitrary computable function and P is a polynomial in the order n of the input tournament?

Finally, in Section[6] we present some possible directions for further research.

2 Definitions and folklore on tournaments

The score sequence of a tournament 7, denoted by s(7°), is the non-decreasing sequence of outdegrees of
its vertices. Landau [6] characterized the non-decreasing sequences of integers that are score sequences.

Theorem 13 (Landau [6]). A non-decreasing sequence of non-negative integers (s, S2, ..., Sy) is a score
sequence if and only if :

(i) s14+s9+---+5; > (;),fori: 1,2,....n—1, and
(ii) s1+s2+ -+ 50 = (5).
Condition (ii) in the above theorem implies directly the following proposition.
Proposition 14. Every tournament of order 2k has minimum degree less than k.
Corollary 15. fr(k1,ke) > k1 + ko + 1.

Proof. Let T be a (k1 +k2)-regular tournament of order 2k; +2ko+1. In every bipartition (V7, V) of V/(T)),
either |V4| < 2k or |Va| < 2k,. Thus, by Proposition[14] either 67 (T[Vi]) < ky or 6T (T[Va]) < ko. O

An {l-cycle is a cycle of length /. A tournament 7' is transitive if it contains no cycles. The score
sequence of a transitive tournament of order n is (0,1,...,n — 1).

We denote by ¢t3(7") the number of transitive subtournaments of order 3 in 7" and by ¢3(7") number of
3-cycles in T'. Since a tournament of order 3 is either a transitive tournament or a 3-cycle, we have

tt3(T) + e3(T) = <|§|>.

. .. . .t
Now if v is a vertex, the number of transitive subtournaments of order 3 with source v is (d (”)). Hence

2
ty(T) = > <d+2(v)) .

veV(T)

A digraph D is strongly connected or strong if there is a path from u to v for every u,v € V(D). A
digraph D is k-strong if D — X is strong for every X C V(D) where | X| < k — 1. A (strong) component
of D is a strong subdigraph of D which is maximal by inclusion.

Let T" be a tournament. Let 77, 75, . . ., T5,, be the components of 7". Then (V (T1), V(13), ...,V (T1))
is a partition of V'(T") and without loss of generality, we may suppose that 7; — T; whenever ¢ < j. In this
case we say that Ty — 15 — - .- — T, is the decomposition of T'. Component 77 is said to be the initial
component of 1" and T, its terminal component.

A vertex is pancyclic in a digraph D if, for every 3 < ¢ < |D|, it is contained in an ¢-cycle. To contain
a pancyclic vertex, a tournament must contain a hamiltonian cycle. Therefore, it must be strong according
to Camion’s theorem [4]]. Moon [8]] showed that this condition is sufficient.



Theorem 16 (Moon [8])). Every vertex of a strong tournament is pancyclic.

We sometimes use the results of this section without referring to them.

3 Small subtournament of minimum outdegree &

We now prove Theorem [7l In fact, we prove a more general theorem whose particular case with U = () is
Theorem [71

Theorem 17. Let T be a tournament with minimum outdegree at least k and U C V(T') be a subset of
vertices. There is a subtournament T' of T with minimum outdegree k such that U C V(T") and |V (T")| <
\U| + k?/2 4 3k/2 + 1.

Proof. For every p, we prove the result for all sets U of size p by induction on |V (T)
trivially if [V (T)| < p + k*/2 + 3k/2 + 1.

Let T be a tournament of order at least p + k?/2 + 3k/2 + 2 with minimum outdegree at least k and
U a set of p vertices of T". Let S be the set of vertices of degree k in T". There are k|S| arcs with their
tail in S. Among them |S|(|S| — 1)/2 are in S and the remaining ones have their heads out of S. Hence
INT(S)] < |S| + k|S| — |S|(|S] — 1)/2. Now the polynomial P(z) = (k + 3/2)x — 2%/2 increases on
[0,k + 3/2] and decreases on [k + 3/2,+oo[. Moreover P(k + 1) = P(k +2) = k?/2 + 3k/2 + 1.
Consequently, [N *(S)| < k?/2 + 3k/2 + 1.

Since |V (T)| > p + k?/2 + 3k/2 + 2, there is a vertex v which is not in N*(S) U U. Thus T — v
has minimum outdegree at least k& and by induction 7" — v (and thus also T") has a subtournament 7" with
minimum outdegree k such that U C V(T") and |V (T")| < |U| + k?/2 + 3k/2 + 1. O

, the result holding

The bound k2 /2 + 3k/2 + 1 s Theoremis tight in the following sense.

Proposition 18. For every non-negative integer k, and for everyn > k?/2+3k/2+1, there is a tournament
T(n, k) of order n and a set W C V(T of order n — k? /2 + 3k /2 + 1 such that for every U C W, every
subtournament T' with minimum outdegree k such that U C V (T") has order at least |U|+k?/2+3k/2+1.

Proof. Consider the disjoint union of a strong tournament S of order k£ + 1 and a transitive tournament 7T’
of order k(k 4+ 1)/2. Set V/(S) = {s1,...,sk+1}. Partition V(T'T) into k + 1 sets Ay, ..., Agt+1 such that
|Aj] = k — d(s;). This is possible since S-F1 d& (s;) = k(k +1)/2, s0 S5 (k — df (s;)) = |V(TT)).
Now for each 4, add the arc s;a for all a € A;, and all the arcs bs; for all b € V(T'T) \ A;. The resulting
tournament R has order k?/2 + 3k/2 + 1 and minimum outdegree k.

Let R’ be a subtournament of R with outdegree at least k.

It must contains a vertex of S, because all subtournaments of 7T are transitive. But each element s of .S
has outdegree exactly k in R, so if s € V/(R’), then N}t (s) C V(R’). Since S is strong, it has a hamiltonian
cycle by Camion’s Theorem, and so V' (S) C V(R’). But by construction, every vertex in R is dominated
by a vertex in S, and thus must be in R’. Hence R = R/.

Set p = n — k%/2 + 3k/2 + 1. Let T(n, k) be a tournament obtained from the disjoint union of R
and the transitive tournament 77}, of order p by adding all arcs from 7T}, towards R. Then, for any set
U C V(T'T,), every subtournament of 7'(n, k) with minimum outdegree k containing U must also contain
V(R) and thus has order at least |U| 4 k2 /2 + 3k/2 + 1. O

We can then easily derive Theorem [8|from Theorem



Proof of Theorem[8] Let T be a tournament of minimum outdegree at least m. The tournament 7" — U, has
minimum outdegree at least k1 because |Us| = us. Thus, by Theorem there exists a subtournament 77
of T'— Us with minimum degree at least k1 and order at most k%/? +3k1/24uy + 1 such that Uy C V(T1).
Set Vi = V(Ty), Ty = T — T4, and Vo = V(T%). By definition, U; C Vj and Uy C V. Now 67 (T3) >
8T (T) — |Vi| > ko. Hence (V(T1), V(T»)) is a (k1, ko)-outdegree-splitting. O

3.1 Outdegree-critical tournaments

Theorem [/| can be rephrased in terms of k-outdegree-critical tournament. A tournament 7 is said to be k-
outdegree-critical if it has minimum outdegree k and all its proper subtournaments have outdegree less than
k. Theorem [7)implies that all k-outdegree-critical tournaments have bounded size. Hence a natural problem
is the following.

Problem 19. Describe the k-outdegree-critical tournaments.

The unique 1-outdegree-critical tournament is the 3-cycle.
We now show that the 2-outdegree-critical tournaments are those depicted in Figure|[I]

Theorem 20. Every tournament with minimum outdegree 2 has a subtournament isomorphic to one of those
depicted in Figure|l]

A6 B6 CG D6

Egs Rs

Figure 1: The 2-outdegree-critical tournaments.

Proof. By induction on |V (T")

, the result holding trivially when |V (T')| < 5.



Let T" be a tournament of order at least 5 with minimum outdegree 2. Every vertex v has an inneighbour
u such that d* (u) = 2, for otherwise T' — v has minimum outdegree at least 2 and by induction 7' — u (and
thus also 7°) has a subtournament with minimum outdegree 2 and with order 5 or 6.

Let S be the set of vertices of outdegree 2 in 7. By the previous remark, S is not empty and 7'[S|] has
minimum indegree at least 1. Hence 7S] contains a 3-cycle C' = (x1, x2,x3). Fori = 1,2, 3, let y; be the
outneighbour of z; in V(T) \ {x1, 2, z3}. If all y; are distinct, then each y; dominates {x1, x2, 23} \ {zi},
and so T'[{x1, x2, x3,Y1, Y2, y3}] is one of the tournaments Ag, Bg, Cs and Dg. If y1 = yo = ys3, let z; and
z9 be the two outneighbours of y;. These two vertices dominate {x1, x2, x3}, so T'[{z1, x2, x3, Y1, 21, 22 }]
is isomorphic to Fg . If y; = y2 # ys3, then y3 dominates z; and x2, and y; dominates x3. If y; dominates
y3, then T'[{x1, x2, x3, Y1, y3}] is isomorphic to Rs. If y; is dominated by ys3, let z be an outneighbour of y;

distinct from z3. The vertex z dominates {x1, z2}, so T[{z1, x2, 3, y1, Y3, 2}] is isomorphic to Cg or D.
]

4 (1, k)-outdegree-splitting of tournaments

4.1 Improved upper bound for f7(1,k)

A 3-cycle C' in a tournament 7' is said to be k-good if 6T (T — C) > k. Clearly, if C is a k-good 3-cycle,
then (V(C), V(T — C)) is a (1, k)-splitting of T".

Lemma 21. Let k be an integer and let T be a strong tournament with minimum outdegree at least k + 2.
Let S be the set of vertices with outdegree k + 2 in T. If T has no k-good 3-cycle, then the following hold.

(i) Every arc is dominated by a vertex in S.
(ii) Forevery vertex v, the subtournament T[N~ (v)NS| has minimum indegree 1 and at least five vertices.
(i) |[V(T)| < 15(k + 7)(k + 8).

Proof. Suppose that T' contains no k-good 3-cycle. A 3-cycle C in T is S-dominated if there is a vertex
x € S dominating C'. Clearly, a 3-cycle in 1" is k-good if and only if it is not S-dominated. Hence all
3-cycles are S-dominated.

(i) Let uv be an arc. Since 7' is strong, there is a 3-cycle C' containing u by Theorem [16] This cycle is
dominated by a vertex s € S. If s dominates v, then s dominates the arc wv. If not, then uwvs is a 3-cycle.
This cycle is dominated by a vertex in s’ in .S, which thus dominates uwv.

(ii) Let v be a vertex of T'. By (i), v is dominated by a vertex in .S, so N~ (v) N S is not empty. For
any vertex s € N~ (v) N S, the arc sv is dominated by a vertex s’ € S, which is distinct from s. Hence
T[N~ (v) N S] has indegree at least 1 and thus contains a 3-cycle s;s2s3. This 3-cycle is dominated by a
vertex s € S.

Assume fist s — v. By (i) the arc sv is dominated by a vertex s’ of S. Clearly s’ ¢ {s1, s2, s3}, because
dominates s1s2s3. Hence s1, 2, s3, s, 8 are five vertices in N~ (v) N S.

Assume now that v — s. Then ssjv is a 3-cycle which is dominated by a vertex s’. This vertex is in
N~ (v) NS and is distinct from s2, s3 because it dominates s. Furthermore, by (i) there is a vertex ¢ of S
dominating s'v. If t ¢ {s1, s2, s3}, then s1, s2, s3, 8, t are five vertices in N~ (v) N S. So we may assume
thatt € {s1, s2, s3} and , without loss of generality, t = s5. Now, there is a vertex s” dominating the 3-cycle
ss9v. This vertex is distinct from s1, s3 because it dominates s, and is distinct from s’ because it dominates
s9. Hence, s1, s2, s3, s', 8" are five vertices in N~ (v) N S.



(iii) By (ii), every vertex has at least four inneighbours in .S. Thus

V)| = I8 (S) <181+ 5 (<k+2>|sw (7))

But the polynomial Q(z) = z + 1 ((k+2)z — (35)) = 15¢(2k + 15 — ) increases on [0,k + 15/2] and
decreases on [k + 15/2, +o00[ and Qk+7) =Qk+ ) = L (k + 7)(k + 8). Consequently, |V (T)| <
L(k+T7)(k+8). O

Theorem 22. Let k be an integerin {1,2,3,4}. If T is a tournament with minimum outdegree at least k+2,
then T contains a k-good 3-cycle.

Proof. 1t is sufficient to prove the result for strong tournaments. Indeed if 7' is not strong, then its terminal
component 7" has also outdegree at least k + 2. Moreover, every 3-cycle that is k-good in 7" is also k-good
inT.

Henceforth, we may assume that 7" is strong. Let .S be the set of vertices with outdegree k£ + 2 in 7.

e Assume k € {1,2}. Then every vertex of S has outdegree at most 4 in T'[S], so T'[S] has a vertex
with indegree at most 4. Thus, by Lemma [21}(ii), 7" has a 1-good 3-cycle.

e Assume k = 3. Since §7(7) > 5, then |[V(T)| > 11. By Lemma 21}(iii), we have the result
if |V(T)| > 11. Henceforth we may assume |V (T')| = 11, so T is 5-regular. Hence tt3(T) =
2 vev(T) ( ) = 110. Thus c3(T) = (131) — 110 = 55. Now a tournament of order 5 contains at most
five 3-cycles, and it contains exactly five if and only if it is R5 the 2-regular tournament on 5-vertices.
If all the 3-cycles are dominated, the outneighbourhood of every vertex induces an 5. But then a
vertex u dominates at most two inneighbours of any other vertex v. Now if 1" had no k-good 3-cycles,
then by Lemma 21}(ii), for every vertex v the subtournament 7'[N ~(v)] would have a 3-cycle, which
cannot be dominated and thus is k-good, a contradiction.

e Assume k = 4. Since 67(T) > 6, then |V(T)| > 13. By Lemma 21}(iii), we have the result if
|V(T)| > 13. Henceforth we may assume |V (T')| = 13, so T is 6-regular. It is possible to test all
6-regular graphs on 13 vertices using a simple computer program and verify that each of them has at
least one good 3-cycle.

O
Corollary 23. Fork € {1,2,3,4}, fr(1,2) =k +2.
Proof. Let k € {1,2,3,4}. Theorem 22|implies fr(1,k) < k + 2 and Corollary 15 yields fr(1,k) >
k+ 2. O

We believe that Theorem [22] can be extended to all values of k.

Conjecture 24. Let k be a positive integer. If T is a tournament with minimum outdegree at least k + 2,
then T’ contains a k-good 3-cycle.

A first step to prove this conjecture is the following.

Conjecture 25. Let k be a positive integer. If T' is a (k + 2)-regular tournament, then T contains a k-good
3-cycle.



If true Conjecture [24] would be best possible.

Proposition 26. Let k be a positive integer. For any n > 3k + 3, there is a tournament of order n with
minimum outdegree k + 1 that does not admit any (1, k)-outdegree-splitting.

Proof. Let n > 3k + 3. Let T be a tournament of order n whose vertex set can be partitioned into
(X1, X9, {z}) such that X1 — X9, Xo — z, x — X3, T[X}] is a transitive tournament of order n — 2k — 2,
and T'[X5] is a k-regular tournament.

Clearly, 6T (T) = k + 1. Let us now prove that 7" has no (1, k)-outdegree-splitting.

Suppose for a contradiction that 7" admits a (1, k)-outdegree-splitting (V7, V2). The set V2 must contain
a vertex in X because T'[X; U {x}] is transitive. The subtournament 7'[V;] contains a 3-cycle C. This cycle
either contains x or is contained in C7.

e If C contains z, then C' = zx1x9 with 1 € X and 9 € Xo. But T[X>] is k-regular, so it is strong.
Thus there is a vertex u of Vo N X» dominating a vertex in V| N X5. Thus u has outdegree at most
k — 1 in T[V3], a contradiction.

e If C is contained in C, then |Vo N X5| < 2k — 2. Therefore T'[V, N X5] has a vertex u with outdegree
less than k& — 1. This vertex u has outdegree less than & in T'[V3], a contradiction.

O]

4.2 Existence of k-good 3-cycles

A result of Song [11] states that every 2-strong tournament of order at least 6 can be split into a 3-cycle
and a strong subtournament unless it is Py, the Paley tournament of order 7. Since P is 3-regular, it has a
1-good 3-cycle by Theorem [22] Therefore we obtain the following.

Theorem 27. Every 2-strong tournament of order at least 6 has a 1-good 3-cycle and thus admits a (1,1)-
outdegree-splitting.

In fact, having a 1-good 3-cycle is equivalent to having a (1, 1)-outdegree-splitting.

Proposition 28. Let T' be a tournament. Then T has a (1,1)-outdegree-splitting if and only if it has a
1-good 3-cycle C.

Proof. As we already observed, if C'is a 1-good 3-cycle, then T has a (1, 1)-outdegree-splitting.
Conversely, suppose that 7" admits a (1, 1)-outdegree-splitting (V1, V). Then fori = 1, 2, T'[V;] contains
a 3-cycle C;. Let S be the largest set such that Vo C Sy C V(T — Cy) and 6+ (T[Ss]) > 1. If Sy =
V(T — Cy), then Cj is k-good. If not, then let R = V(T — C}) \ Sa. By definition, S — R. Thus
§T(T — Cs) > 1, and (O is k-good. O

Unfortunately, Proposition [28| cannot be generalized for larger value of k£ in the sense that there are
tournaments with a (1, k)-splitting and no k-good 3-cycles. Furthermore, there are such tournaments with
minimum outdegree k+1; this shows that the condition of having minimum outdegree k+2 in Conjecture[24]
is best possible.

Proposition 29. Let k be an integer greater than 1. There exists a tournament of order at 3k + 3 with
minimum outdegree k + 1 such that T has a (1, k)-splitting but no k-good 3-cycles.



Proof. Let T be a tournament whose vertex set can be partitioned into (X7, X9, X3, {z}) such that X; —
Xo, X1 U X9 = X3, X3 =z, x — X1 U Xy, T[X] is a transitive tournament of order k — 2, and T'[X]
is a 3-cycle and T'[X3] is a k-regular tournament.

Clearly, (X7 U Xo U {zx}, X3)is a (1, k)-splitting of T".

Let us now prove that no 3-cycle is k-good. There are three kinds of 3-cycles: T'[X3], 3-cycles contained
in T'[X3], and 3-cycles of the form xyz with y € X1 U X5 and z € X3.

e T'[X5] is not k-good, because x has outdegree less than k in T — X.

e If C is a 3-cycle in T'[X3], then T'[X3] — C has at most 2k — 2 vertices and thus contains a vertex v
of outdegree less than k£ — 1. Therefore v has outdegree less than k in " — C'. So C' is not k-good.

o If C is a 3-cycle of the form xyz with y € X7 U X5 and z € X3, then every inneighbour v of z in
T'[X3] has outdegree less than k in 7' — C. So C'is not k-good.

O]

Problem 30. For any fixed k > 2, are there infinitely many strong tournaments with minimum outdegree
k + 1 that have a (1, k)-splitting but no k-good 3-cycles ?

S Finding outdegree splittings in tournaments

Theorem 31. For every positive integers ki and ks, TOURNAMENT (k1, k2)-OUTDEGREE-SPLITTING is
polynomial-time solvable.

Proof. Letg(k) = k?/2+3k/2+1. Let T be a tournament of order n. If T has a (k1, k2)-outdegree-splitting
(V1, V1), then V; contains a subset Sy of size at most g(k1) such that 6 (T[S1]) > ki.

The algorithm considers all subsets S; of order at most g(k1). For each of them, we first check if
8T (T[S1]) > k1. If no, we proceed to the next subtournament. If yes, we check if there is a (k1, k2)-
outdegree-splitting (V7, V2) such that S; C V) using a procedure extend(S7). If this procedure, returns
‘yes’, then we also return ‘yes’. If not we proceed to the next subtournament.

The procedure extend(S7) proceeds as follows. If S; = V(T'), return ‘no’. If T'— S7 has minimum
outdegree at least ko, we return (S1, V/(T') \ S1). Otherwise, pick a vertex x of V' (T') \ S7 having outdegree
less than k2 in T' — Sy and return extend (S U {z}).

The procedure extend runs in O(n?)-time. (We only need to make O(n) updates on the score se-
quence). At worse, we run it for each subset S; of size at most g(k;). There are O (ng(kl)) such subsets.
Hence the algorithm runs in O (n9(¥1)+2) time. O

The running time of the algorithm given in the proof of Theorem [31]is certainly not optimal. When
k1 = 1, running time is O(n®). We now give a faster algorithm, that runs in O(n?) time for k; = 1
and ko > 2 and in O(n2) time for k; = ko = 1. This algorithm is also faster that the one described in
Theorem 111

The key ingredients are the following three statements. The first one is an immediate extension of
Proposition with an identical proof, which translates into a O(n?)-time algorithm.

Proposition 32. Let D be a digraph of order n. If D contains two disjoint digraphs D1, Ds such that
§T(D;) = ki fori = 1,2 and d},(v) > ki + ke — 1 forall v € V(D — (D1 U D3)), then D admits a
(K1, k2 )-outdegree-splitting. Moreover such a (ky, k2 )-outdegree-splitting can be found in O(n?) time.
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The second one is an algorithmic version of Theorem 17}

Proposition 33. Let T be a tournament with minimum outdegree at least k. One can find in O(n?) time a
subtournament T' of T with minimum outdegree k such that |V (T")| < k?/2 + 3k/2 + 1.

Proof. By the proof of Theorem [17] if |V (T)| > k?/2 + 3k/2 + 1, then it contains a vertex x such that
T — z has minimum outdegree at least k. Such a vertex can be found in O(n?) time, by finding the set S
of vertices with outdegree k, and taking x not in S U N (S). We then recursively apply the procedure to
T — z. As we reduce the order of the tournament at most n times, we find the desired subtournament 7" in

O(n?) time. O

Lemma 34. Let T be a tournament and v a vertex of T. If T has a (1, k)-outdegree-splitting (V1, Va) with
vy € VA, then there is a 3-cycle Cy in T'[V1] such thatv € V(C1) or V(C1) C N1 (v).

Proof. Let Ny = Nt (v) N Vi. If T[Ny] has a cycle, then it is the desired 3-cycle. Otherwise, T'[NV1] is a
transitive tournament. Now the sink w of T'[N;] has an outneighbour w in T'[V;], which is necessarily an
inneighbour of v, by definition of N;. Therefore uvw is the desired 3-cycle. U

Theorem 35. (i) TOURNAMENT (1, 1)-OUTDEGREE-SPLITTING can be solved in O(n?) time;
(ii) for all k > 2, TOURNAMENT (1, k)-OUTDEGREE-SPLITTING can be solved in O(n?) time.

Proof. (i) Let us describe a procedure (1,1)-split(7') that given a tournament 7" returns ‘yes’ if it admits
a (1, 1)-outdegree-splitting, and returns ‘no’, otherwise.

0. We first compute the outdegree of every vertex and we determine 7 (7'). This can be done in O(n?)
time.

1. If 67(T) = 0, then the tournament 7" has no (1, 1)-outdegree-splitting, and we return ‘no’.
2. If 67(T) > 3, the answer is ‘yes’, by Corollary

3. If 67(T) € {1,2,}, let v be a vertex of degree 1 or 2 in 7. Without loss of generality, one may
look for a (1, 1)-outdegree-splitting (V7, V5) of T such that v € V;. For every w € N*(v) and
u € NT(w) \ NT(v), we check whether T' — {u,v,w} contains a 3-cycle. If yes for at least one
choice of {u, v, w}, the answer is ‘yes’ by Proposition [3|since §7(7') > k. If not, then return ‘no’ .
This is valid by Lemma[34]

Given its score sequence, checking if a tournament of order n contains a 3-cycle can be done in O(n)
by checking whether the score sequence is distinct from (0,1,2,...,n — 1), the score sequence of the
transitive tournament. Since the score sequence of 7' — {u, v, w} can be obtained in linear time from the list
of outdegrees of T, checking if 7" — {u, v, w} contains a cycle can be done in O(n) time.

Now since v has degree at most 2, the procedure considers at most 2(n — 1) subtournaments 7' —
{u, v, w}. Therefore (1,1)-split runsin O(n?) time.

(ii) Let us describe a procedure (1,k)-split(7T) that given a tournament 7 returns ‘yes’ if 7" if it
admits a (1, k)-outdegree-splitting, and return ‘no’, otherwise.

0. We first compute the outdegree of every vertex and we determine 6+ (7). This can be done in O(n?)
time.

11



1. If 5 (T) = 0, then the tournament 7" has no (1, k)-outdegree-splitting, and we return ‘no’.

2. If1 < 5+(T) < k — 1, let U; be the set of vertices of degree less than k in T'. Clearly, for any
(1,2)-outdegree-splitting (Vy, Vo) of T, U; C V. Let v be a vertex of Uy. For every w € N (v) and
u € NT(w)\ NT(v), we check whether T'— (Uy U {u, v, w}) contains a subtournament of minimum
outdegree k using the procedure Outdegree-k—Subtournament described below. If yes for at
least one choice of {u,v,w}, the answer is ‘yes’ by Proposition [32] since all vertices of V(T \ U
have outdegree at least &k in 7T". If not, then return ‘no’ . This is valid by Lemma

3. If §7(T) > k, then we first find a subtournament 7" of T with §(T") > k and |V (T")| < k?/2 +
3k/2 + 1. If T — T" contains a 3-cycle, then T" admits a (1, k)-outdegree-splitting by Proposition 3]
and so we return ‘yes’. If not then 7" — 7" is a transitive tournament and all 3-cycles of 7" intersect
T’ and therefore there are at most (k%/2 + 3k/2 + 1)n? of them. For each 3-cycle C, we check
with Outdegree—k—Subtournament whether 7' — C contains a subtournament of minimum
outdegree k. If yes, for one of them, then we return ‘yes’ because there is a (1, k)-outdegree-splitting
by Proposition 3] If not, then we return ‘no’.

Remark 36. In the above procedure, one can shorten Step 3 if 67 (7") > k+ 2. In this case, by Corollary
we can directly return ‘yes’.

The procedure Outdegree-k-Subtournament(7') takes as an input the tournament 7" as well as
its list of outdegrees and a list L of vertices in the transitive tournament 7' — 7" ordered in increasing order
of their outdegrees. Observe that the list of outdegrees is already computed when degree—(1,k)-split
call this procedure and the order of 7' — T” can be computed just once after computing 7”. First, we alter
the list of outdegrees by keeping the outdegrees for vertices in 7" but for vertices in 7" — T” we count only
outneighbours in 7”. At each step, Outdegree—k-Subtournament first checks V(7') and returns ‘no’
if V(T') = 0, otherwise it tries to finds a vertex v with d*(v) < k. Notice that possible candidates for v
are only vertices in 7" and the first k vertices in L. If there is no such vertex v, it returns ‘yes’. Otherwise
it removes v and tries again. If v € V(T"), then it decreases the outdegree of all inneighbours of v and if
v & V(T"), then it decreases outdegrees only for inneighbours from V' (7”). The total time spent on a vertex
v € V(T") is O(n), which gives O(V(T")n) = O(n) in total. The total time spent on a vertex v ¢ V (T")
is O(1), which gives O(n) in total. Therefore, Outdegree-k—Subtournament runs in O(n) time.

Now Step 1 runs in constant time. In Step 2, there are at most k£ + 1 candidates for w, and thus
Outdegree-k-Subtournament is called less than (k 4 1)n times. Therefore Step 2 runs in O(n?)
time. Step 3 first finds a small subtournament 7" with outdegree k, which can be done in O(n?) time by
Proposition Then it runs O(n?) times Outdegree-k-Subtournament. Therefore Step 3 runs in
O(n?) time.

Overall (1, k)-split runsin O(n?) time. O

The procedure (1, k)-split(7") can be modified to find a (1, k)-outdegree-splitting if it exists, using
Proposition [32]instead of Proposition [3]

In contrast, the procedure (1,1)-split(7") cannot be instantly modified into a procedure that finds a
(1, 1)-outdegree-splitting if it exists. However, using a similar approach, we now describe such a procedure.

Theorem 37. One can find a (1,1)-outdegree-splitting of a tournament in O(n?) time.
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Proof. Let us describe a procedure (1,1)-findsplit(7) that returns a (1, 1)-outdegree-splitting of the
tournament 7" if it admits one, and return ‘no’, otherwise.

We first compute the outdegree of every vertex and we determine 6 (7).

If T contains a vertex of outdegree 0, then we return ‘no’. If 67(T") > 4, then we pick a vertex = and
find a 3-cycle C containing x. Such a cycle can be found in O(n?) by testing if there is an arc from N+ (z)
to N~ (z). We return (V(C), V(T — C)). This is valid since §*(T" — C) > §+(T) — |V (C)| > 1.

If 67 (T) < 3, we choose a vertex v such that d*(v) € {1,2,3}. If T[N (v)] induces a 3-cycle, then
we check whether T'— N (v) contains a cycle C. If yes, we extend (T[Nt (v)], C) into a (1, 1)-outdegree-
splitting by Proposition[32} If not, for every w € N*(v) andu € N*(w)\ N (v), we check if T'—{u, v, w}
contains a cycle C'(uvw). If yes for at least one choice of {u,w}, then we extend (vvw, C(uvw)) into a
(1, 1)-outdegree-splitting by Proposition [32)and we return ‘no’ otherwise. This is valid by Lemma [34]

Since there are at most three candidates for w, there are O(n) cases to check. Therefore (1,1)-findsplit
runs in O(n?) time. O

Remark 38. The proof of Proposition [28] yields a O(n?)-time procedure to find a 1-good 3-cycle given
a (1, 1)-outdegree-splitting. Combining this procedure with (1,1)-findsplit, we obtain a O(n?)-time
algorithm that finds a 1-good 3-cycle in a tournament if it exists, and returns ‘no’ otherwise.

6 Further research

6.1 Splittable score sequences

Being (1, 1)-outdegree-splittable is not determined by the score sequence. For example, the two tour-
naments depicted Figure [2| have score sequences (2,2,2,2,3,4) but the one to the left has no (1,1)-
outdegree-splitting (See Proposition while the one to the right admits the (1, 1)-outdegree-splitting
({v1, v2,v3}, {v4, v5,06}).

)
Figure 2: Non-(1, 1)-outdegree-splittable and (1, 1)-outdegree-splittable tournaments with the same score
sequence

However there are score sequences s such that all tournaments with score sequence s are (1, 1)-outdegree-
splittable. Such score sequences are said to be (1, 1)-outdegree-splittable. For example, Theoremimplies
that (s1, ..., sn) is (1, 1)-outdegree-splittable.

Problem 39. Which score sequences are (1, 1)-outdegree-splittable?

13



6.2 Erdos-Posa property for digraphs with minimum outdegree %

McCuaig’s algorithm [7] relies on the theorem stating that a digraph D has either two disjoint cycles or a
set .S of at most three vertices such that D — S is acyclic. More generally, Reed et al. [9] showed that cycles
in digraphs have the Erdos-Posa property.

Theorem 40 (Reed et al. [9]). For every positive integer n, there exists an integer t(n) such that for every
digraph D, either D has a n pairwise-disjoint cycles, or there exists a set T of at most t(n) vertices such
that D — T is acyclic.

It is then natural to ask whether digraphs with maximum outdegree k have the the Erdos-Posa property.

Problem 41. Let k be a fixed integer. For every positive integer n, does there exist an integer ty(n) such
that for every digraph D, either D has a n pairwise-disjoint subdigraphs with minimum outdegree k, or
there exists a set T of at most ty(n) vertices such that 67 (D —T) < k ?

6.3 Strong connectivity and outdegree-splitting with prescribed vertices

Any fr(k1, k2)-strong tournament has minimum outdegree at least fr(k1, k2) and thus admits a (k1, k2)-
outdegree-splitting. Therefore, it is natural to ask the following.

Problem 42. What is the minimum integer hp(ky, ka) such that every hy(ky, ko)-strong tournament T of
order at least 2k1 + 2ky + 2 contains a (ki, k2)-outdegree-splitting ?

The condition |V (T)| > 2k; + 2ko + 2 is the above problem is just to avoid the small tournaments that
cannot have any (ki k2)-outdegree-splitting for cardinality reasons. Clearly, hr(k1, ko) < fr(ki, ka). But
itis very likely that hr (k1, ko) is smaller than fr(kq, k2). As mentionned in the beginning of Subsectionf4.2]
a result of Song [[11]] implies that A7 (1,1) < 2 (In fact A7 (1,1) = 2 because a 1-strong tournament 7" with
a vertex v such that 7" — v is a transitive tournament has clearly no (1, 1)-outdegree-splitting.) whereas
fr(1,1) = 3,

One might also ask similar questions for outdegree-splitting with prescribed vertices (as in Theorem g).
Bang-Jensen et al. [2] proved that if T is a tournament of order 8 and zy an arc in 7" such that 7'\ zy is
2-strong, then 7" contains an outdegree-1-splitting (V;, V) withz € V, and y € V,.
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