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Hypercube

• Qn is n-dimensional hypercube (n-cube)

Q1 Q2 Q3

• e(G ) := |E (G )|
• exQ(n,F ) := the maximum number of edges of a F -free

subgraph of Qn

• πQ(F ) = lim
n→∞

exQ(n,F )

e(Qn)
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πQ(n,C6)

Theorem (Conder [1993])

πQ(C6) ≥ 1/3.

Theorem (Chung [1992])

πQ(C6) ≤
√

2− 1 ≈ 0.41421.

Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+])

πQ(C6) ≤ 0.3755.
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Flag Algebras

Definition
p(H,G ): the probability that a random |V (H)|-set U in V (G )
induces G [U] isomorphic to H.

Razborov [2007] developed flag algebras. Let G be the family of
graphs forbidding some structures, then flag algebras can be used
to bound

lim
G∈G,|V (G)|→∞

p(H,G ).



Introduction Flag Algebras Proof 1st try Flags

Results using Flag Algebras

Theorem (Hladký–Král’–Norine [2009])

Every n-vertex digraph with minimum outdegree at least 0.3465n
contains a triangle.

Theorem
(Hatami–Hladký–Král’–Norine–Razborov [2011],
Grzesik [2011])

The number of C5s in a triangle-free graph of order n is at most
(n/5)5.

Theorem (Falgas-Ravry–Vaughan [2011])

π(K−4 ,C5,F3,2) = 12/49, π(K−4 ,F3,2) = 5/18.

F3,2 : {123, 145, 245, 345},C5 : {123, 234, 345, 451, 512}.
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Proof by an Example

Example
πQ(C4) ≤ 2/3

Bound infinite problem by a finite piece.

Definition
Hn: the family of spanning subgraphs of Qn not containing C4.

Let H ∈ Hs ,G ∈ Hn, s < n, p(H,G ) is the probability that a
random s-hypercube in G induces H.
ρ(G ) = e(G )/e(Qn).

ρ(G ) =
∑
H∈Hs

ρ(H)p(H,G )

ρ(G ) ≤ max
H∈Hs

ρ(H)

πQ(C4) ≤ max
H∈Hs

ρ(H)
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Is the bound good?

ρ(G ) =
∑
H∈Hs

ρ(H)p(H,G )

ρ(G ) ≤ max
H∈Hs

ρ(H)

πQ(C4) ≤ max
H∈Hs

ρ(H)

H2

H1 H2 H3 H4 H5

πQ(C4) ≤ max ρ(Hi ) = ρ(H5) = 3/4

If 0 ≤∑i cHi
p(Hi ,G ), then

ρ(G ) ≤
∑
i

(ρ(Hi ) + cHi
) p(Hi ,G )

πQ(C4) ≤ max
i

(ρ(Hi ) + cHi
)

cHi
might be negative
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Example Continued: Flags

Definition
Flags: F=(H, θ),H ∈ Hs , θ : [2k ]→ V (H) is injective,
H[Im(θ)] ∈ Hk .

1
F1

1
F2

Let G ∈ Hn, θ : [1]→ V (G ).

Definition
p(Fi , θ,G ): the probability that a random 1-cube U in G subject
to Im(θ) ⊂ U satisfies (U, θ) = Fi .
p(Fi ,Fj , θ,G ): the probability that two random 1-cubes U1,U2 in
G subject to U1 ∩ U2 = Im(θ) satisfy (U1, θ) = Fi , (U2, θ) = Fj .
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Example Continued: p(Fi , θ,G )
Let G ∈ Hn, θ : [1]→ V (G ).

Definition
p(Fi , θ,G ): the probability that a random 1-cube U in G subject
to Im(θ) ⊂ U satisfies (U, θ) = Fi .

1
F1

H4

1 θ

U

U

p(F1, θ,H4) = 1/2
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Proof Continued: Flags

Let M = (mij) be a positive semidefinite 2-by-2 matrix, define
pθ = {p(F1, θ;G ), p(F2, θ;G )}, then

0 ≤ Eθ[pθMpTθ ]
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Proof Continued: Flags

0 ≤ Eθ[pθMpTθ ] =
∑
H∈H2

∑
1≤i ,j≤2

mijEθ[p(Fi ,Fj , θ;H)]p(H,G )+o(1).

Let
cH(M) =

∑
1≤i ,j≤2

mijEθ[p(Fi ,Fj , θ;H)],

then
0 ≤

∑
H∈H2

cH(M)p(H,G ) + o(1).

So
ρ(G ) ≤

∑
H∈H2

(ρ(H) + cH(M)) p(H,G )

πQ(C4) ≤ max
H∈H2

(ρ(H) + cH(M))
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Computing Eθ[p(Fi ,Fj , θ;H)]

H1 H2 H3 H4 H5

1
F1

1
F2

H1 H2 H3 H4 H5

F1,F1 1 1/2 0 1/4 0

F1,F2 0 1/4 1/2 1/4 1/4

F2,F2 0 0 0 1/4 1/2
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Optimizing M

M =

(
m11 m12

m21 m22

)

ρ(H1) + cH1 = 0 + m11

ρ(H2) + cH2 = 1/4 + m11/2 + m12/2

ρ(H3) + cH3 = 1/2 + m12

ρ(H4) + cH4 = 1/2 + m11/4 + m12/2 + m22/4

ρ(H5) + cH5 = 3/4 + m12/2 + m22/2

πQ(C4) ≤ max
i

(ρ(Hi ) + cHi
)
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Solution

Take

M =

(
2/3 −1/3
−1/3 1/6

)
,

then
max

i
(ρ(Hi ) + cHi

) = 2/3
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Results

Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+])

πQ(C4) ≤ 0.6068.

Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+])

πQ(C6) ≤ 0.3755.

By using H3 and bigger flags.

Almost surely can be improved by waiting.
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Thank you for your attention!


	Introduction
	Flag Algebras
	Proof 1st try
	Flags
	  

