UPPER BOUNDS ON THE SIZE OF 4- AND 6-CYCLE-FREE SUBGRAPHS OF THE HYPERCUBE

József Balogh, Ping Hu, Bernard Lidický and Hong Liu

University of Illinois at Urbana-Champaign

AMS - March 18, 2012

HYPERCUBE

- e(G) := |E(G)|
- ex_Q(n, F) := the maximum number of edges of a F-free subgraph of Q_n

•
$$\pi_{\mathcal{Q}}(F) = \lim_{n \to \infty} \frac{\exp(n, F)}{e(\mathcal{Q}_n)}$$

HYPERCUBE

- e(G) := |E(G)|
- ex_Q(n, F) := the maximum number of edges of a F-free subgraph of Q_n

•
$$\pi_{\mathcal{Q}}(F) = \lim_{n \to \infty} \frac{\exp(n, F)}{e(\mathcal{Q}_n)}$$

HYPERCUBE

- e(G) := |E(G)|
- ex_Q(n, F) := the maximum number of edges of a F-free subgraph of Q_n

•
$$\pi_{\mathcal{Q}}(F) = \lim_{n \to \infty} \frac{e x_{\mathcal{Q}}(n, F)}{e(\mathcal{Q}_n)}$$

HYPERCUBE

- e(G) := |E(G)|
- ex_Q(n, F) := the maximum number of edges of a F-free subgraph of Q_n

•
$$\pi_{\mathcal{Q}}(F) = \lim_{n \to \infty} \frac{\exp(n, F)}{e(\mathcal{Q}_n)}$$

INTRODUCTION

FLAGS

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_Q(C_4) = 1/2, \ \pi_Q(C_{2t}) = 0 \text{ for } t > 2$

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_Q(C_4) = 1/2, \ \pi_Q(C_{2t}) = 0 \text{ for } t > 2$

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_Q(C_4) = 1/2, \ \pi_Q(C_{2t}) = 0 \text{ for } t > 2$

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_{\mathcal{Q}}(C_4) = 1/2, \ \pi_{\mathcal{Q}}(C_{2t}) = 0 \text{ for } t > 2$ THEOREM (CHUNG [1992],

BROUWER-DEJTER-THOMASSEN [1993]) $\pi_{\mathcal{O}}(C_6) \ge 1/4$

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_{\mathcal{Q}}(C_4) = 1/2, \ \pi_{\mathcal{Q}}(C_{2t}) = 0 \text{ for } t > 2$

Theorem (Chung [1992], Brouwer–Dejter–Thomassen [1993]) $\pi_{Q}(C_{6}) \geq 1/4$

Theorem (Conder [1993]) $\pi_Q(C_6) \ge 1/3$

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_Q(C_4) = 1/2, \ \pi_Q(C_{2t}) = 0 \text{ for } t > 2.$ THEOREM (CHUNG [1992]) $\pi_Q(n, C_{2t}) = 0 \text{ for even } t \ge 4.$ THEOREM (FÜREDI-ÖZKAHYA [2009]) $\pi_Q(C_{2t}) = 0 \text{ for odd } t \ge 7.$

if $\pi_\mathcal{Q}(\mathit{C}_{10})=0$ is still open.

 $\pi_{\mathcal{Q}}(C_{2t})$

CONJECTURE (ERDŐS [1984]) $\pi_Q(C_4) = 1/2, \ \pi_Q(C_{2t}) = 0 \text{ for } t > 2.$ THEOREM (CHUNG [1992]) $\pi_Q(n, C_{2t}) = 0 \text{ for even } t \ge 4.$ THEOREM (FÜREDI-ÖZKAHYA [2009]) $\pi_Q(C_{2t}) = 0 \text{ for odd } t \ge 7.$

if $\pi_{\mathcal{Q}}(C_{10}) = 0$ is still open.

THEOREM (BRASS-HARBORTH-NIENBORG [1995]) $ex_{Q}(n, C_{4}) \geq \frac{1}{2}(1 + \frac{1}{\sqrt{n}})e(Q_{n})$ (valid when n is a power of 4)

THEOREM (CHUNG [1992]) $\pi_{Q}(C_{4}) \leq 0.62284.$

THEOREM (THOMASON-WAGNER [2009])

THEOREM (BRASS-HARBORTH-NIENBORG [1995]) $ex_{Q}(n, C_{4}) \geq \frac{1}{2}(1 + \frac{1}{\sqrt{n}})e(Q_{n})$ (valid when n is a power of 4) THEOREM (CHUNG [1992]) $\pi_{Q}(C_{4}) \leq 0.62284.$

Theorem (Thomason–Wagner [2009])

THEOREM (BRASS-HARBORTH-NIENBORG [1995]) $ex_Q(n, C_4) \ge \frac{1}{2}(1 + \frac{1}{\sqrt{n}})e(Q_n)$ (valid when n is a power of 4) THEOREM (CHUNG [1992])

 $\pi_{\mathcal{Q}}(C_4) \leq 0.62284.$

THEOREM (THOMASON-WAGNER [2009]) $\pi_{\mathcal{Q}}(C_4) \leq 0.62256.$

THEOREM (BRASS-HARBORTH-NIENBORG [1995]) $ex_Q(n, C_4) \ge \frac{1}{2}(1 + \frac{1}{\sqrt{n}})e(Q_n)$ (valid when n is a power of 4) THEOREM (CHUNG [1992]) $\pi_Q(C_4) \le 0.62284.$

THEOREM (THOMASON-WAGNER [2009]) $\pi_{\mathcal{Q}}(C_4) \leq 0.62083.$

THEOREM (BRASS-HARBORTH-NIENBORG [1995]) $ex_{Q}(n, C_{4}) \geq \frac{1}{2}(1 + \frac{1}{\sqrt{n}})e(Q_{n})$ (valid when n is a power of 4)

THEOREM (CHUNG [1992]) $\pi_{Q}(C_{4}) \leq 0.62284.$

THEOREM (THOMASON–WAGNER [2009]) $\pi_Q(C_4) \leq 0.62083.$

THEOREM (BALOGH-HU-L-LIU, IND. BABER [2012+]) $\pi_{\mathcal{Q}}(C_4) \leq 0.6068.$

 $\pi_{\mathcal{Q}}(n, C_6)$

Theorem (Conder [1993]) $\pi_{\mathcal{Q}}(C_6) \ge 1/3.$

THEOREM (CHUNG [1992]) $\pi_{\mathcal{Q}}(C_6) \leq \sqrt{2} - 1 \approx 0.41421.$

 $\pi_{\mathcal{Q}}(n, C_6)$

Theorem (Conder [1993]) $\pi_{\mathcal{Q}}(C_6) \ge 1/3.$

THEOREM (CHUNG [1992]) $\pi_{\mathcal{Q}}(C_6) \leq \sqrt{2} - 1 \approx 0.41421.$

 $\pi_{\mathcal{Q}}(n, C_6)$

Theorem (Conder [1993]) $\pi_{\mathcal{Q}}(C_6) \geq 1/3.$

THEOREM (CHUNG [1992]) $\pi_{\mathcal{Q}}(C_6) \leq \sqrt{2} - 1 \approx 0.41421.$

Theorem (Balogh-Hu-L-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}(C_6) \leq 0.3755.$

FLAG ALGEBRAS

DEFINITION

p(H, G): the probability that a random |V(H)|-set U in V(G) induces G[U] isomorphic to H.

Razborov [2007] developed flag algebras. Let ${\cal G}$ be the family of graphs forbidding some structures, then flag algebras can be used to bound

$$\lim_{G\in\mathcal{G},|V(G)|\to\infty}p(H,G).$$

Results using Flag Algebras

Theorem (Hladký–Kráľ'–Norine [2009])

Every n-vertex digraph with minimum outdegree at least 0.3465*n contains a triangle.*

THEOREM

(Hatami–Hladký–Král'–Norine–Razborov [2011], Grzesik [2011])

The number of $C_5 s$ in a triangle-free graph of order n is at most $(n/5)^5$.

THEOREM (FALGAS-RAVRY-VAUGHAN [2011]) $\pi(K_4^-, C_5, F_{3,2}) = 12/49, \pi(K_4^-, F_{3,2}) = 5/18.$ $F_{3,2}: \{123, 145, 245, 345\}, C_5: \{123, 234, 345, 451, 512\}.$

RESULTS USING FLAG ALGEBRAS

Theorem (Hladký-Kráľ'-Norine [2009])

Every n-vertex digraph with minimum outdegree at least 0.3465n contains a triangle.

Theorem

(Hatami–Hladký–Král'–Norine–Razborov [2011], Grzesik [2011])

The number of C_5s in a triangle-free graph of order n is at most $(n/5)^5$.

THEOREM (FALGAS-RAVRY-VAUGHAN [2011]) $\pi(K_4^-, C_5, F_{3,2}) = 12/49, \pi(K_4^-, F_{3,2}) = 5/18.$ $F_{3,2}: \{123, 145, 245, 345\}, C_5: \{123, 234, 345, 451, 512\}.$

Results using Flag Algebras

THEOREM (HLADKÝ-KRÁĽ-NORINE [2009])

Every n-vertex digraph with minimum outdegree at least 0.3465n contains a triangle.

THEOREM

(Hatami–Hladký–Král'–Norine–Razborov [2011], Grzesik [2011])

The number of C_5s in a triangle-free graph of order n is at most $(n/5)^5$.

THEOREM (FALGAS-RAVRY–VAUGHAN [2011]) $\pi(K_4^-, C_5, F_{3,2}) = 12/49, \pi(K_4^-, F_{3,2}) = 5/18.$

 $F_{3,2}: \{123, 145, 245, 345\}, C_5: \{123, 234, 345, 451, 512\}.$

Results using Flag Algebras

Theorem (Hladký-Kráľ'-Norine [2009])

Every n-vertex digraph with minimum outdegree at least 0.3465n contains a triangle.

THEOREM

(Hatami–Hladký–Král'–Norine–Razborov [2011], Grzesik [2011])

The number of C_5s in a triangle-free graph of order n is at most $(n/5)^5$.

THEOREM (FALGAS-RAVRY-VAUGHAN [2011]) $\pi(K_4^-, C_5, F_{3,2}) = 12/49, \pi(K_4^-, F_{3,2}) = 5/18.$ $F_{3,2} : \{123, 145, 245, 345\}, C_5 : \{123, 234, 345, 451, 512\}.$

PROOF BY AN EXAMPLE

EXAMPLE $\pi_Q(C_4) \le 2/3$ Bound infinite problem by a finite piece.

DEFINITION

 \mathcal{H}_n : the family of spanning subgraphs of \mathcal{Q}_n not containing C_4 .

Let $H \in \mathcal{H}_s$, $G \in \mathcal{H}_n$, s < n, p(H, G) is the probability that a random *s*-hypercube in *G* induces *H*.

 $\rho(G) = e(G)/e(\mathcal{Q}_n).$

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

 $\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$

$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

PROOF BY AN EXAMPLE

EXAMPLE $\pi_Q(C_4) \le 2/3$ Bound infinite problem by a finite piece.

DEFINITION

 \mathcal{H}_n : the family of spanning subgraphs of \mathcal{Q}_n not containing C_4 .

Let $H \in \mathcal{H}_s$, $G \in \mathcal{H}_n$, s < n, p(H, G) is the probability that a random *s*-hypercube in *G* induces *H*. $p(G) = e(G)/e(\mathcal{Q}_n)$.

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

 $\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$

$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

PROOF BY AN EXAMPLE

EXAMPLE $\pi_Q(C_4) \le 2/3$ Bound infinite problem by a finite piece.

DEFINITION

 \mathcal{H}_n : the family of spanning subgraphs of \mathcal{Q}_n not containing C_4 .

Let $H \in \mathcal{H}_s$, $G \in \mathcal{H}_n$, s < n, p(H, G) is the probability that a random *s*-hypercube in *G* induces *H*.

 $\rho(G) = e(G)/e(\mathcal{Q}_n).$

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

 $\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$

 $\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$

PROOF BY AN EXAMPLE

EXAMPLE $\pi_Q(C_4) \le 2/3$ Bound infinite problem by a finite piece.

DEFINITION

 \mathcal{H}_n : the family of spanning subgraphs of \mathcal{Q}_n not containing C_4 .

Let $H \in \mathcal{H}_s$, $G \in \mathcal{H}_n$, s < n, p(H, G) is the probability that a random *s*-hypercube in *G* induces *H*.

 $\rho(G) = e(G)/e(\mathcal{Q}_n).$

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

$$\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

 $\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$

PROOF BY AN EXAMPLE

EXAMPLE $\pi_Q(C_4) \le 2/3$ Bound infinite problem by a finite piece.

DEFINITION

 \mathcal{H}_n : the family of spanning subgraphs of \mathcal{Q}_n not containing C_4 .

Let $H \in \mathcal{H}_s$, $G \in \mathcal{H}_n$, s < n, p(H, G) is the probability that a random *s*-hypercube in *G* induces *H*.

 $\rho(G) = e(G)/e(\mathcal{Q}_n).$

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

$$\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

IS THE BOUND GOOD?

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

$$\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$
$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

IS THE BOUND GOOD?

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

$$\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$
$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

 $\pi_{\mathcal{Q}}(C_4) \leq \max \rho(H_i) = \rho(H_5) = 3/4$

If $0 \leq \sum_{i} c_{H_i} p(H_i, G)$, then

IS THE BOUND GOOD?

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

$$\rho(G) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$
$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_s} \rho(H)$$

IS THE BOUND GOOD?

$$\rho(G) = \sum_{H \in \mathcal{H}_s} \rho(H) p(H, G)$$

 c_{H_i} might be negative

EXAMPLE CONTINUED: FLAGS

DEFINITION Flags: $F=(H,\theta), H \in \mathcal{H}_s, \theta : [2^k] \to V(H)$ is injective, $H[Im(\theta)] \in \mathcal{H}_k.$

Let
$$G \in \mathcal{H}_n, \theta : [1] \to V(G)$$
.

Definition

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

EXAMPLE CONTINUED: FLAGS

DEFINITION Flags: $F = (H, \theta), H \in \mathcal{H}_s, \theta : [2^k] \to V(H)$ is injective, $H[Im(\theta)] \in \mathcal{H}_k.$

Let
$$G \in \mathcal{H}_n, \theta : [1] \to V(G)$$
.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

DEFINITION

 $p(F_i, \theta, G)$: the probability that a random 1-cube U in G subject to $Im(\theta) \subset U$ satisfies $(U, \theta) = F_i$.

$$p(F_1,\theta,H_4)=1/2$$

PROOF CONTINUED: FLAGS

Let $M = (m_{ij})$ be a positive semidefinite 2-by-2 matrix, define $\mathbf{p}_{\theta} = \{p(F_1, \theta; G), p(F_2, \theta; G)\}$, then

 $0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{T}]$

PROOF CONTINUED: FLAGS

Let $M = (m_{ij})$ be a positive semidefinite 2-by-2 matrix, define $\mathbf{p}_{\theta} = \{p(F_1, \theta; G), p(F_2, \theta; G)\}$, then

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{T}] = \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},\theta,G)p(F_{j},\theta,G)]$$

Let $M = (m_{ij})$ be a positive semidefinite 2-by-2 matrix, define $\mathbf{p}_{\theta} = \{p(F_1, \theta; G), p(F_2, \theta; G)\}$, then

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{\mathsf{T}}] = \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(\mathsf{F}_{i},\theta,\mathsf{G})p(\mathsf{F}_{j},\theta,\mathsf{G})]$$

LEMMA

$$p(F_i, \theta, G)p(F_j, \theta, G) = p(F_i, F_j, \theta, G) + o(1),$$

 $o(1) \rightarrow 0 \text{ as } n \rightarrow \infty.$

Let $M = (m_{ij})$ be a positive semidefinite 2-by-2 matrix, define $\mathbf{p}_{\theta} = \{p(F_1, \theta; G), p(F_2, \theta; G)\}$, then

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{T}] = \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},\theta,G)p(F_{j},\theta,G)]$$
$$= \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},F_{j},\theta,G)] + o(1)$$

Lemma

$$p(F_i, \theta, G)p(F_j, \theta, G) = p(F_i, F_j, \theta, G) + o(1),$$

 $o(1) \rightarrow 0 \text{ as } n \rightarrow \infty.$

Let $M = (m_{ij})$ be a positive semidefinite 2-by-2 matrix, define $\mathbf{p}_{\theta} = \{p(F_1, \theta; G), p(F_2, \theta; G)\}$, then

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{T}] = \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},\theta,G)p(F_{j},\theta,G)]$$
$$= \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},F_{j},\theta,G)] + o(1)$$

Lemma

$$\mathbb{E}_{\theta}[p(F_i, F_j, \theta; G)] = \sum_{H \in \mathcal{H}_2} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)]p(H, G)$$

PROOF CONTINUED: FLAGS

Let $M = (m_{ij})$ be a positive semidefinite 2-by-2 matrix, define $\mathbf{p}_{\theta} = \{p(F_1, \theta; G), p(F_2, \theta; G)\}$, then

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{T}] = \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},\theta,G)p(F_{j},\theta,G)]$$
$$= \sum_{1 \leq i,j \leq 2} m_{ij}\mathbb{E}_{\theta}[p(F_{i},F_{j},\theta,G)] + o(1)$$
$$= \sum_{1 \leq i,j \leq 2} \sum_{H \in \mathcal{H}_{2}} m_{ij}\mathbb{E}_{\theta}[p(F_{i},F_{j},\theta;H)]p(H,G) + o(1)$$

Lemma

$$\mathbb{E}_{\theta}[p(F_i, F_j, \theta; G)] = \sum_{H \in \mathcal{H}_2} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)]p(H, G)$$

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{\mathsf{T}}] = \sum_{H \in \mathcal{H}_2} \sum_{1 \leq i,j \leq 2} m_{ij} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)]p(H, G) + o(1).$$

Let

$$c_H(M) = \sum_{1 \le i,j \le 2} m_{ij} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)],$$

then

$$0 \leq \sum_{H \in \mathcal{H}_2} c_H(M) p(H, G) + o(1).$$

So

$$\rho(G) \leq \sum_{H \in \mathcal{H}_2} \left(\rho(H) + c_H(M)\right) p(H,G)$$
$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_2} \left(\rho(H) + c_H(M)\right)$$

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{\mathsf{T}}] = \sum_{H \in \mathcal{H}_2} \sum_{1 \leq i,j \leq 2} m_{ij} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)]p(H, G) + o(1).$$

Let

$$c_H(M) = \sum_{1 \leq i,j \leq 2} m_{ij} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)],$$

then

$$0 \leq \sum_{H \in \mathcal{H}_2} c_H(M) p(H,G) + o(1).$$

So

$$\rho(G) \leq \sum_{H \in \mathcal{H}_2} \left(\rho(H) + c_H(M) \right) p(H, G)$$
$$\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_2} \left(\rho(H) + c_H(M) \right)$$

$$0 \leq \mathbb{E}_{\theta}[\mathbf{p}_{\theta}M\mathbf{p}_{\theta}^{\mathsf{T}}] = \sum_{H \in \mathcal{H}_2} \sum_{1 \leq i,j \leq 2} m_{ij} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)]p(H, G) + o(1).$$

Let

$$c_H(M) = \sum_{1 \leq i,j \leq 2} m_{ij} \mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)],$$

then

$$0 \leq \sum_{H \in \mathcal{H}_2} c_H(M) p(H,G) + o(1).$$

So

$$ho(G) \leq \sum_{H \in \mathcal{H}_2} \left(
ho(H) + c_H(M) \right) p(H,G)$$
 $\pi_{\mathcal{Q}}(C_4) \leq \max_{H \in \mathcal{H}_2} \left(
ho(H) + c_H(M) \right)$

COMPUTING $\mathbb{E}_{\theta}[p(F_i, F_j, \theta; H)]$

	H_1	H_2	H_3	H_4	H_5
F_1, F_1	1	1/2	0	1/4	0
F_1, F_2	0	1/4	1/2	1/4	1/4
F_2, F_2	0	0	0	1/4	1/2

Optimizing M

$$M = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right)$$

$$\rho(H_1) + c_{H_1} = 0 + m_{11}$$

$$\rho(H_2) + c_{H_2} = 1/4 + m_{11}/2 + m_{12}/2$$

$$\rho(H_3) + c_{H_3} = 1/2 + m_{12}$$

$$\rho(H_4) + c_{H_4} = 1/2 + m_{11}/4 + m_{12}/2 + m_{22}/4$$

$$\rho(H_5) + c_{H_5} = 3/4 + m_{12}/2 + m_{22}/2$$

$$\pi_{\mathcal{Q}}(C_4) \leq \max_i (\rho(H_i) + c_{H_i})$$

Optimizing M

$$M = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right)$$

$$\rho(H_1) + c_{H_1} = 0 + m_{11}$$

$$\rho(H_2) + c_{H_2} = 1/4 + m_{11}/2 + m_{12}/2$$

$$\rho(H_3) + c_{H_3} = 1/2 + m_{12}$$

$$\rho(H_4) + c_{H_4} = 1/2 + m_{11}/4 + m_{12}/2 + m_{22}/4$$

$$\rho(H_5) + c_{H_5} = 3/4 + m_{12}/2 + m_{22}/2$$

$$\pi_{\mathcal{Q}}(C_4) \leq \max_i (
ho(H_i) + c_{H_i})$$

SOLUTION

Take

$$M = \left(egin{array}{cc} 2/3 & -1/3 \ -1/3 & 1/6 \end{array}
ight),$$

then

$$\max_i (\rho(H_i) + c_{H_i}) = 2/3$$

RESULTS

Theorem (Balogh-Hu-L-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}(C_4) \leq 0.6068.$

Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}(C_6) \leq 0.3755.$

By using \mathcal{H}_3 and bigger flags.

Almost surely can be improved by waiting.

RESULTS

Theorem (Balogh-Hu-L-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}(C_4) \leq 0.6068.$

Theorem (Balogh–Hu–L–Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}(C_6) \leq 0.3755.$

By using \mathcal{H}_3 and bigger flags.

Almost surely can be improved by waiting.

Thank you for your attention!