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Definitions (4-critical graphs)

graph G = (V ,E)

coloring is ϕ : V → C such that ϕ(u) 6= ϕ(v) if uv ∈ E

G is a k-colorable if coloring with |C| = k exists

G is a 4-critical graph if G is not 3-colorable
but every H ⊂ G is 3-colorable.



Inspiration

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

Recently reproved by Kostochka and Yancey using

Theorem (Kostochka and Yancey ’12)
If G is a 4-critical graph, then

|E(G)| ≥ 5|V (G)| − 2
3

.

used as 3|E(G)| ≥ 5|V (G)| − 2



Every planar triangle-free graph is 3-colorable

Let G be a minimal counterexample - not 3-colorable
triangle-free plane graph, but every proper subgraph is. i.e. G
is 4-critical
CASE1 G contains a 4-face (try 3-color G)
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Every planar triangle-free graph is 3-colorable

Let G be a minimal counterexample - not 3-colorable
triangle-free plane graph, but every proper subgraph is. i.e. G
is 4-critical
CASE1 G contains a 4-face (try 3-color G)

CASE2 G contains no 4-faces
|E(G)| = e, |V (G)| = v , |F (G)| = f .
• v − 2 + f = e by Euler’s formula
• 2e ≥ 5f since face is at least a 5-face
• 5v − 10 + 5f = 5e
• 5v − 10 + 2e ≥ 5e
• 5v − 10 ≥ 3e (our case)
• 3e ≥ 5v − 2 (every 4-critical graph)



Generalizations?

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

Can be strengthened?



Generalizations?

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

Can be strengthened?

Yes! - recall that CASE2
• 5v − 10 ≥ 3e (no 3-,4-faces)
• 3e ≥ 5v − 2 (every 4-critical graph)

has some gap.



Adding a bit

Theorem (Aksenov ’77; Jensen and Thomassen ’00)
Let G be a triangle-free planar graph and H be a graph such
that G = H − h for some edge h of H. Then H is 3-colorable.
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Adding a bit

Theorem (Aksenov ’77; Jensen and Thomassen ’00)
Let G be a triangle-free planar graph and H be a graph such
that G = H − h for some edge h of H. Then H is 3-colorable.

Theorem (Jensen and Thomassen ’00)
Let G be a triangle-free planar graph and H be a graph such
that G = H − v for some vertex v of degree 3. Then H is
3-colorable.
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Adding a bit

Theorem (Aksenov ’77; Jensen and Thomassen ’00)
Let G be a triangle-free planar graph and H be a graph such
that G = H − h for some edge h of H. Then H is 3-colorable.

Theorem
Let G be a triangle-free planar graph and H be a graph such
that G = H − v for some vertex v of degree 4. Then H is
3-colorable.
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For proof

Theorem
Let G be a triangle-free planar graph and H be a graph such
that G = H − v for some vertex v of degree 4. Then H is
3-colorable.
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Proof

G plane, triangle-free, G = H − v ,
H is 4-critical G

H

h

G

H

v

CASE1: No 4-faces in G
V (H) = v ,E(H) = e,V (G) = v − 1,E(G) = e − 4,F (G) = f
• 5f ≤ 2(e − 4) since G has no 4-faces
• (v − 1) + f − (e − 4) = 2 by Euler’s formula
• 5v + 5f − 5e = −5
• 5v − 3e − 8 ≥ −5
• 5v − 3 ≥ 3e (our case)
• but 3e ≥ 5v − 2 (H is 4-criticality)

CASE2: 4-face (v0, v1, v2, v3) ∈ G
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Proof

G plane, triangle-free, G = H − v ,
H is 4-critical G

H
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CASE1: No 4-faces in G
CASE2: 4-face (v0, v1, v2, v3) ∈ G
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Precoloring

Theorem (Grötzsch ’59)
Let G be a triangle-free plane graph and F be a face of G of
length at most 5. Then each 3-coloring of F can be extended to
a 3-coloring of G.

G G G

Theorem (Aksenov et al. ’02)
Let G be a triangle-free planar graph. Then each coloring of
two non-adjacent vertices can be extended to a 3-coloring of G.



For proof

Theorem (Grötzsch ’59)
Let G be a triangle-free plane graph and F be a face of G of
length at most 5. Then each 3-coloring of F can be extended to
a 3-coloring of G.
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Proof

If G is a triangle-free plane graph, F is a precolored 4-face or
5-face, then precoloring of F extends.

CASE1: F is a 4-face
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Proof
If G is a triangle-free plane graph, F is a precolored 4-face or
5-face, then precoloring of F extends.
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Proof
If G is a triangle-free plane graph, F is a precolored 4-face or
5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable

1 2

12

G G v

H 1 2

12

G 3

H

1 2

13

G G H

1 2

13

G H

CASE2: F is a 5-face

2 3

21
3

G G v

H 2 3

21
3

G 1

H



Some triangles?

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.



Some triangles?

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

We already showed one triangle!

G

Removing one edge of triangle results in triangle-free G.



Some triangles?

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

Theorem (Grünbaum ’63; Aksenov ’74; Borodin ’97)
Let G be a planar graph containing at most three triangles.
Then G is 3-colorable.

G



Three triangles - Proof outline

Theorem (Grünbaum ’63; Aksenov ’74; Borodin ’97)
Let G be a planar graph containing at most three triangles.
Then G is 3-colorable.

• G is 4-critical (minimal counterexample)
• 3-cycle is a face
• 4-cycle is a face or has a triangle inside and outside
• 5-cycle is a face or has a triangle inside and outside

CASE1: G has no 4-faces
CASE2: G has a 4-faces with triangle (no identification)
CASE3: G has a 4-face where identification is possible



Three triangles - Proof outline

CASE1: G has no 4-faces

• v − 2 + f = e by Euler’s formula
• 5v − 4 + 5f − 6 = 5e
• 2e ≥ 5(f − 3) + 3 · 3 = 5f − 6 since 3 triangles
• 5v − 4 ≥ 3e (our case)
• 3e ≥ 5v − 2 (every 4-critical graph)



Three triangles - Proof outline

CASE2: G has a 4-face F with a triangle (no identification)

v3 v2

v1v0

F

Both v0, v1, v2 and v0, v2, v3 are faces. G has 4 vertices!



Three triangles - Proof

CASE3: G has a 4-face where identification is possible
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Since G is plane, some vertices are the same.



Three triangles - Proof

CASE3: G has a 4-face where identification is possible

v3 v2

v1v0

x1

x2

y1

y2

Since G is plane, some vertices are the same.

v0 v1

v2v3

z

x = y

v0 v1

v2v3

z

x y



Three triangles - Proof

CASE3: G has a 4-face where identification is possible

Since G is plane, some vertices are the same.

v0 v1

v2v3

z

x = y

v0 v1

v2v3

z

x y

Only two cases left . . .
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Thank you for your attention!

Slides available at
http://www.math.uiuc.edu/~lidicky/

http://www.math.uiuc.edu/~lidicky/

