Short proofs of coloring theorems on planar graphs

Oleg V. Borodin, Alexandr V. Kostochka, Bernard Lidický, Matthew Yancey

Sobolev Institute of Mathematics and Novosibirsk State University University of Illinois at Urbana-Champaign

AMS Sectional Meeting University of Colorado Boulder, Boulder April 13, 2013

Definitions (4-critical graphs)

graph G = (V, E)coloring is $\varphi : V \to C$ such that $\varphi(u) \neq \varphi(v)$ if $uv \in E$ *G* is a *k*-colorable if coloring with |C| = k exists *G* is a 4-critical graph if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Inspiration

Theorem (Grötzsch '59) Every planar triangle-free graph is 3-colorable.

Recently reproved by Kostochka and Yancey using

Theorem (Kostochka and Yancey '12) *If G is a 4-critical graph, then*

$$|E(G)|\geq \frac{5|V(G)|-2}{3}.$$

used as $3|E(G)| \ge 5|V(G)| - 2$

Let G be a minimal counterexample - not 3-colorable triangle-free plane graph, but every proper subgraph is. i.e. Gis 4-critical

CASE1 G contains a 4-face (try 3-color G)

Let G be a minimal counterexample - not 3-colorable triangle-free plane graph, but every proper subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)

Let G be a minimal counterexample - not 3-colorable triangle-free plane graph, but every proper subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)

Let G be a minimal counterexample - not 3-colorable triangle-free plane graph, but every proper subgraph is. i.e. Gis 4-critical

CASE1 G contains a 4-face (try 3-color G)

Let G be a minimal counterexample - not 3-colorable triangle-free plane graph, but every proper subgraph is. i.e. Gis 4-critical

CASE1 G contains a 4-face (try 3-color G)

Let *G* be a minimal counterexample - not 3-colorable triangle-free plane graph, but every proper subgraph is. i.e. *G* is 4-critical

CASE1 G contains a 4-face (try 3-color G)

CASE2 G contains no 4-faces

|E(G)| = e, |V(G)| = v, |F(G)| = f.

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since face is at least a 5-face
- 5v 10 + 5f = 5e
- $5v 10 + 2e \ge 5e$
- $5v 10 \ge 3e$ (our case)
- $3e \ge 5v 2$ (every 4-critical graph)

Every planar triangle-free graph is 3-colorable.

Can be strengthened?

Every planar triangle-free graph is 3-colorable.

Can be strengthened?

Yes! - recall that CASE2

- 5v − 10 ≥ 3e (no 3-,4-faces)
- $3e \ge 5v 2$ (every 4-critical graph)

has some gap.

Adding a bit

Theorem (Aksenov '77; Jensen and Thomassen '00) Let *G* be a triangle-free planar graph and *H* be a graph such that G = H - h for some edge *h* of *H*. Then *H* is 3-colorable.

Adding a bit

Theorem (Aksenov '77; Jensen and Thomassen '00) Let *G* be a triangle-free planar graph and *H* be a graph such that G = H - h for some edge *h* of *H*. Then *H* is 3-colorable.

Theorem (Jensen and Thomassen '00)

Let G be a triangle-free planar graph and H be a graph such that G = H - v for some vertex v of degree 3. Then H is 3-colorable.

Adding a bit

Theorem (Aksenov '77; Jensen and Thomassen '00) Let *G* be a triangle-free planar graph and *H* be a graph such that G = H - h for some edge *h* of *H*. Then *H* is 3-colorable.

Theorem

Let G be a triangle-free planar graph and H be a graph such that G = H - v for some vertex v of degree 4. Then H is 3-colorable.

For proof

Theorem

Let G be a triangle-free planar graph and H be a graph such that G = H - v for some vertex v of degree 4. Then H is 3-colorable.

G plane, triangle-free, G = H - v, *H* is 4-critical

H

CASE1: No 4-faces in G V(H) = v, E(H) = e, V(G) = v - 1, E(G) = e - 4, F(G) = f

- $5f \leq 2(e-4)$ since G has no 4-faces
- (v 1) + f (e 4) = 2 by Euler's formula
- 5v + 5f 5e = -5
- 5v − 3e − 8 ≥ −5
- 5v − 3 ≥ 3e (our case)
- but $3e \ge 5v 2$ (*H* is 4-criticality)

CASE2: 4-face $(v_0, v_1, v_2, v_3) \in G$

G plane, triangle-free, G = H - v, *H* is 4-critical

H

CASE1: No 4-faces in GCASE2: 4-face $(v_0, v_1, v_2, v_3) \in G$

G plane, triangle-free, G = H - v, *H* is 4-critical

Η

CASE1: No 4-faces in GCASE2: 4-face $(v_0, v_1, v_2, v_3) \in G$

G plane, triangle-free, G = H - v, *H* is 4-critical

H

CASE1: No 4-faces in GCASE2: 4-face $(v_0, v_1, v_2, v_3) \in G$

Precoloring

Theorem (Grötzsch '59)

Let G be a triangle-free plane graph and F be a face of G of length at most 5. Then each 3-coloring of F can be extended to a 3-coloring of G.

Theorem (Aksenov et al. '02)

Let G be a triangle-free planar graph. Then each coloring of two non-adjacent vertices can be extended to a 3-coloring of G.

For proof

Theorem (Grötzsch '59)

Let G be a triangle-free plane graph and F be a face of G of length at most 5. Then each 3-coloring of F can be extended to a 3-coloring of G.

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

If *G* is a triangle-free plane graph, *F* is a precolored 4-face or 5-face, then precoloring of *F* extends.

CASE1: F is a 4-face H is 3-colorable

Every planar triangle-free graph is 3-colorable.

Every planar triangle-free graph is 3-colorable.

We already showed one triangle!

Removing one edge of triangle results in triangle-free G.

Every planar triangle-free graph is 3-colorable.

Theorem (Grünbaum '63; Aksenov '74; Borodin '97) Let *G* be a planar graph containing at most three triangles. Then *G* is 3-colorable.

Three triangles - Proof outline

Theorem (Grünbaum '63; Aksenov '74; Borodin '97) Let *G* be a planar graph containing at most three triangles. Then *G* is 3-colorable.

- G is 4-critical (minimal counterexample)
- 3-cycle is a face
- 4-cycle is a face or has a triangle inside and outside
- 5-cycle is a face or has a triangle inside and outside

CASE1: G has no 4-faces

CASE2: G has a 4-faces with triangle (no identification) CASE3: G has a 4-face where identification is possible

Three triangles - Proof outline

CASE1: G has no 4-faces

- v 2 + f = e by Euler's formula
- 5v 4 + 5f 6 = 5e
- $2e \ge 5(f-3) + 3 \cdot 3 = 5f 6$ since 3 triangles
- 5v − 4 ≥ 3e (our case)
- $3e \ge 5v 2$ (every 4-critical graph)

Three triangles - Proof outline

CASE2: G has a 4-face F with a triangle (no identification)

Both v_0 , v_1 , v_2 and v_0 , v_2 , v_3 are faces. *G* has 4 vertices!

Three triangles - Proof

CASE3: G has a 4-face where identification is possible

Since *G* is plane, some vertices are the same.

Three triangles - Proof

CASE3: G has a 4-face where identification is possible

Since *G* is plane, some vertices are the same.

Three triangles - Proof

CASE3: G has a 4-face where identification is possible

Since *G* is plane, some vertices are the same.

Only two cases left

Thank you for your attention!

Slides available at

http://www.math.uiuc.edu/~lidicky/