ON THE TREE SEARCH PROBLEM WITH
NON-UNIFORM COSTS

Ferdinando Cicalese, Balazs Keszegh, Bernard Lidicky,
Domotor Palvolgyi, Tomas Valla

University of Salerno, Rényi Institute, University of lllinois at Urbana-Champaign,
Eotvos University, Czech Technical University

27th Cumberland Conference on Combinatorics,
Graph Theory & Computing
May 17, 2014

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

R

Questions: Is the special object in a subset S?
Answers: Yes/No.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

Questions: Is the special object in a subset S?
Answers: Yes/No.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

Questions: Is the special object in a subset S?
Answers: Yes/No.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

R

Questions: Is the special object in a subset S?
Answers: Yes/No.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

R

Questions: Is the special object in a subset S?
Answers: Yes/No.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

R

Questions: Is the special object in a subset S?
Answers: Yes/No.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

R

Questions: Is the special object in a subset S?
Answers: Yes/No.
Objective: Minimize number of questions.

THE SEARCH PROBLEM - GENERAL VERSION

Input: n objects where one is special
Output: The special object

R

Questions: Is the special object in a subset S?
Answers: Yes/No.
Objective: Minimize number of questions.

Find a treasure quickly!

ONLINE AND OFFLINE VERSIONS

Online: Questions and answers alternate.

. e
-

o=

ONLINE AND OFFLINE VERSIONS

Online: Questions and answers alternate.

T T

[) []

[) (] ° []
[] [) L])

ONLINE AND OFFLINE VERSIONS

Online: Questions and answers alternate.

[) []
[) (] ° []
[] [) L])

Offline: All questions first, then all answers.

ONLINE AND OFFLINE VERSIONS

Online: Questions and answers alternate.

x T
. .
. ,
\ /
o ° o °
. ;) e ° 0
N

Offline: All questions first, then all answers.

ONLINE AND OFFLINE VERSIONS

Online: Questions and answers alternate.

x T T
[) [] (]
[) L[] ° [] L]

ONLINE AND OFFLINE VERSIONS

Online: Questions and answers alternate.

x T T

[) [] []

[) L[] ° [] L]
L] [) []) [)

We consider only online version.

SEARCHING
Find 4 in an ordered list using binary search.

SEARCHING
Find 4 in an ordered list using binary search.

— e
b~ e
oe
e

SEARCHING
Find 4 in an ordered list using binary search.

°
1

= @
e
-3

SEARCHING
Find 4 in an ordered list using binary search.

6 7

SEARCHING
Find 4 in an ordered list using binary search.

SEARCHING IN TREES

Input: Tree T, one hidden vertex

Output:

SEARCHING IN TREES

Input: Tree T, one hidden vertex

Output: Decision tree D of minimum depth

SEARCHING IN TREES

Input: Tree T

SEARCHING IN TREES

Input: Tree T

THEOREM (LAM, YUE ’98)

An optimal decision tree D can be computed in a polynomial time.

SEARCHING IN TREES WITH COSTS ON EDGES

Input: Tree T
Us I I Ve

V2 U1 U3 V4

Output: Optimal decision tree D

SEARCHING IN TREES WITH COSTS ON EDGES
Input: Tree T, cost c: E(T) — Z

Us Ve

221

vy 1 vy V3 3 Uy

Output: Optimal decision tree D

SEARCHING IN TREES WITH COSTS ON EDGES
Input: Tree T, cost c: E(T) — Z

Us Ve

221

vy 1 vy V3 3 Uy

Output: Optimal decision tree D

SEARCHING IN TREES WITH COSTS ON EDGES
Input: Tree T, cost c: E(T) — Z

Us Ve

221

vy 1 vy V3 3 Uy

Output: Optimal decision tree D (cheapest worst case)

SEARCHING IN TREES WITH COSTS ON EDGES
Input: Tree T, cost c: E(T) — Z

Us Ve

221

vy 1 vy V3 3 Uy

Output: Optimal decision tree D (cheapest worst case)

KNOWN RESULTS

Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)

THEOREM (DERENIOWSKY, '06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) - OPT(T,c)

KNOWN RESULTS

Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)
THEOREM (DERENIOWSKY, '06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) - OPT(T,c)

THEOREM (CICALESE, JACOBS, LABER, VALENTIN '12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3

KNOWN RESULTS

Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)
THEOREM (DERENIOWSKY, '06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) - OPT(T,c)

THEOREM (CICALESE, JACOBS, LABER, VALENTIN '12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3
O(n?)-time algorithm if T is a path
O(n2")-time algorithm

KNOWN RESULTS

Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)
THEOREM (DERENIOWSKY, '06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) - OPT(T,c)

THEOREM (CICALESE, JACOBS, LABER, VALENTIN '12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3
O(n?)-time algorithm if T is a path
O(n2")-time algorithm

@) (log:g%)approximation algorithm

OUR RESULTS

Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)

THEOREM (CICALES& KeszeGH, L., PALVOLGYI, VALLA)

NP-complete for diameter 6 subdivided stars (from Knapsack)

(0] (—g—lolgolog n) -approximation algorithm

OUR RESULTS

Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)

THEOREM (CICALES& KESZEGH, L., PALVOLGYI, VALLA)

NP-complete for diameter 6 subdivided stars (from Knapsack)

(0] (—g—lolgolog n) -approximation algorithm

PROBLEM
Is there O I°g">—approximation algorithm?

log n

PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

T

U1 (% Un,

PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

Find a decision tree for S

PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

Find a decision tree for S
Cost : OPT(T,c¢)

PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

IS & Py

Find a decision tree for S
Cost : OPT(T,c¢)

PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

P P P,

Find a decision tree for S and for P;
Cost : OPT(T,c)

PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

IS & Py A

Find a decision tree for S and for P; and combine them.
Cost : OPT(T,c)+ OPT(T,c)

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n);

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t2%%)

Cost: OPT(T,c)

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t2%%)
solve subdivided stars in S

Cost: OPT(T,c)+20PT(T,c)

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t2%%)
solve subdivided stars in S, solve neighbors of S

Cost: OPT(T,c)+20PT(T,c)+ OPT(T,c)

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

NS
AA AA AA..

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t2%%)
solve subdivided stars in S, solve neighbors of S, recursion xk;

Cost: (OPT(T,c)+20PT(T,c)+ OPT(T,c)) x k

PROOF SKETCH (ALGORITHM FOR TREES)

Idea: Find a small separator S, small resulting components, recurse

NS
AA AA AA..

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t2%%)

solve subdivided stars in S, solve neighbors of S, recursion xk;
tk = n hence k = log(n)/ log(t)

Cost: (OPT(T,c)+20PT(T,c)+ OPT(T,c)) x k

Thank you for your attention!

