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Find a treasure quickly!
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We consider only online version.
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Input: Tree T, one hidden vertex
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SEARCHING IN TREES

Input: Tree T

THEOREM (LAM, YUE ’98)

An optimal decision tree D can be computed in a polynomial time.
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NP-complete if diameter of T is 10
O(log(n))-approximation algorithm
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Input: Tree T on n vertices, cost ¢
Output: Decision tree D with cost(D) = OPT(T,c)

THEOREM (CICALES& KESZEGH, L., PALVOLGYI, VALLA)
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PROBLEM
Is there O I°g">—approximation algorithm?

log n
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PROOF WARM-UP

LEMMA
There is a 2-approximation algorithm for subdivided stars.

IS & Py A

Find a decision tree for S and for P; and combine them.
Cost : OPT(T,c)+ OPT(T,c)
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Idea: Find a small separator S, small resulting components, recurse

NS
AA AA AA..

Fix t = log(n); pick t centroids S = {x3 ...}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t2%%)

solve subdivided stars in S, solve neighbors of S, recursion xk;
tk = n hence k = log(n)/ log(t)

Cost: (OPT(T,c)+20PT(T,c)+ OPT(T,c)) x k




Thank you for your attention!



