
On the Tree Search Problem with
Non-uniform costs

Ferdinando Cicalese, Balázs Keszegh, Bernard Lidický,
Dömötör Pálvölgyi, Tomáš Valla

University of Salerno, Rényi Institute, University of Illinois at Urbana-Champaign,
Eötvös University, Czech Technical University

27th Cumberland Conference on Combinatorics,
Graph Theory & Computing

May 17, 2014



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.
Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.
Objective: Minimize number of questions.

Find a treasure quickly!



Online and offline versions

Online: Questions and answers alternate.

x x x

Offline: All questions first, then all answers.

We consider only online version.



Online and offline versions

Online: Questions and answers alternate.

x x x

Offline: All questions first, then all answers.

We consider only online version.



Online and offline versions

Online: Questions and answers alternate.

x x x

Offline: All questions first, then all answers.

We consider only online version.



Online and offline versions

Online: Questions and answers alternate.

x x x

Offline: All questions first, then all answers.

We consider only online version.



Online and offline versions

Online: Questions and answers alternate.

x x x

Offline: All questions first, then all answers.

We consider only online version.



Online and offline versions

Online: Questions and answers alternate.

x x x

Offline: All questions first, then all answers.

We consider only online version.



Searching

in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

41 6 7

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching

in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

41 6 7

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching

in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

41 6 7

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching

in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

41 6 7

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching

in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

v1v2 v3 v4

v5 v6

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

v1v2 v3 v4

v5 v6

Output: Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching in trees

Find 4 in an ordered list using binary search.

Input: Tree T

v1v2 v3 v4

v5 v6

Output: Decision tree D of minimum depth

e13

e34

v4 e36

v3 v6

e12

e15 v2

v1 v5

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching in trees

Find 4 in an ordered list using binary search.

Input: Tree T

v1v2 v3 v4

v5 v6

Output: Decision tree D of minimum depth

e13

e34

v4 e36

v3 v6

e12

e15 v2

v1 v5

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.



Searching in trees with costs on edges
Input: Tree T

, cost c : E (T )→ Z

v1v2 v3 v4

v5 v6

Output: Optimal decision tree D

(cheapest worst case)

e13

e34

v4 e36

v3 v6

e12

e15 v2

v1 v5

cost(D) := max
v∈V (T )

{costD(v)} OPT (T , c) := min
D
{cost(D)}



Searching in trees with costs on edges
Input: Tree T , cost c : E (T )→ Z

v11v2

2

v3 3 v4

2

v5
1

v6

Output: Optimal decision tree D

(cheapest worst case)

e13

e34

v4 e36

v3 v6

e12

e15 v2

v1 v5

cost(D) := max
v∈V (T )

{costD(v)} OPT (T , c) := min
D
{cost(D)}



Searching in trees with costs on edges
Input: Tree T , cost c : E (T )→ Z

v11v2

2

v3 3 v4

2

v5
1

v6

Output: Optimal decision tree D

(cheapest worst case)

e13

2 e34 3

v4 e36 1

v3 v6

e121

e152 v2

v1 v5

cost(D) := max
v∈V (T )

{costD(v)} OPT (T , c) := min
D
{cost(D)}



Searching in trees with costs on edges
Input: Tree T , cost c : E (T )→ Z

v11v2

2

v3 3 v4

2

v5
1

v6

Output: Optimal decision tree D (cheapest worst case)

e13

2 e34 3

v4

5

e36 1

v3

6

v6

6

e121

e152 v2

3v1

5

v5

5

cost(D) := max
v∈V (T )

{costD(v)} OPT (T , c) := min
D
{cost(D)}



Searching in trees with costs on edges
Input: Tree T , cost c : E (T )→ Z

v11v2

2

v3 3 v4

2

v5
1

v6

Output: Optimal decision tree D (cheapest worst case)

e13

2 e34 3

v4

5

e36 1

v3

6

v6

6

e121

e152 v2

3v1

5

v5

5

cost(D) := max
v∈V (T )

{costD(v)} OPT (T , c) := min
D
{cost(D)}



Known results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Dereniowsky, ’06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) · OPT (T , c)

Theorem (Cicalese, Jacobs, Laber, Valentin ’12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3

O(n2)-time algorithm if T is a path
O(n2n)-time algorithm

O
(

log n
log log log n

)
-approximation algorithm



Known results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Dereniowsky, ’06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) · OPT (T , c)

Theorem (Cicalese, Jacobs, Laber, Valentin ’12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3

O(n2)-time algorithm if T is a path
O(n2n)-time algorithm

O
(

log n
log log log n

)
-approximation algorithm



Known results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Dereniowsky, ’06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) · OPT (T , c)

Theorem (Cicalese, Jacobs, Laber, Valentin ’12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3
O(n2)-time algorithm if T is a path
O(n2n)-time algorithm

O
(

log n
log log log n

)
-approximation algorithm



Known results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Dereniowsky, ’06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) · OPT (T , c)

Theorem (Cicalese, Jacobs, Laber, Valentin ’12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3
O(n2)-time algorithm if T is a path
O(n2n)-time algorithm

O
(

log n
log log log n

)
-approximation algorithm



Our results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Cicalese, Keszegh, L., Pálvölgyi, Valla)

NP-complete for diameter 6 subdivided stars (from Knapsack)

O
(

log n
log log n

)
-approximation algorithm

Problem
Is there O

(
log n
log n

)
-approximation algorithm?



Our results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Cicalese, Keszegh, L., Pálvölgyi, Valla)

NP-complete for diameter 6 subdivided stars (from Knapsack)

O
(

log n
log log n

)
-approximation algorithm

Problem
Is there O

(
log n
log n

)
-approximation algorithm?



Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x

v1 v2 vn

Find a decision tree for S and for Pi and combine them.
Cost : OPT (T , c) + OPT (T , c)



Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x

v1 v2 vn

· · ·

S

Find a decision tree for S

and for Pi and combine them.
Cost : OPT (T , c) + OPT (T , c)



Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x

v1 v2 vn

· · ·

S xv1

xv2

xvn

v1

v2

vnx

Find a decision tree for S

and for Pi and combine them.

Cost : OPT (T , c)

+ OPT (T , c)



Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x

v1

P1

v2

P2

vn

Pn

· · ·

S xv1

xv2

xvn

v1

v2

vnx

Find a decision tree for S

and for Pi and combine them.

Cost : OPT (T , c)

+ OPT (T , c)



Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x

v1

P1

v2

P2

vn

Pn

· · ·

S xv1

xv2

xvn

v1

v2

vn

P1

P2

Pn

x

Find a decision tree for S and for Pi

and combine them.

Cost : OPT (T , c)

+ OPT (T , c)



Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x

v1

P1

v2

P2

vn

Pn

· · ·

S xv1

xv2

xvn

P1

P2

Pn

x

Find a decision tree for S and for Pi and combine them.
Cost : OPT (T , c) + OPT (T , c)



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

Fix t = log(n);

pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)
Cost:

(

OPT (T , c)

+ 2OPT (T , c) + OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)

build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)
Cost:

(

OPT (T , c)

+ 2OPT (T , c) + OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t

, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)
Cost:

(

OPT (T , c)

+ 2OPT (T , c) + OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6

2
2

2

1

2

4

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t

, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)
Cost:

(

OPT (T , c)

+ 2OPT (T , c) + OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6

2
2

2

1

2

4
Y

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)

solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)

Cost:

(

OPT (T , c)

+ 2OPT (T , c) + OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6
Y

S· · ·

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S

, solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)

Cost:

(

OPT (T , c) + 2OPT (T , c)

+ OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6
Y

x1

· · ·
x2

· · ·
x3

· · ·
S· · ·

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S

, recursion ×k ;
tk = n hence k = log(n)/ log(t)

Cost:

(

OPT (T , c) + 2OPT (T , c) + OPT (T , c)

) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6
Y

x1

· · ·

· · ·

x2

· · ·

· · ·

x3

· · ·

· · ·

S· · ·

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;

tk = n hence k = log(n)/ log(t)

Cost: (OPT (T , c) + 2OPT (T , c) + OPT (T , c)) × k



Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

x1

x2

x3

x4

x5 x6
Y

x1

· · ·

· · ·

x2

· · ·

· · ·

x3

· · ·

· · ·

S· · ·

Fix t = log(n); pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)
Cost: (OPT (T , c) + 2OPT (T , c) + OPT (T , c)) × k



Thank you for your attention!


